In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimensional autocorrelation function (ACF) of the binary excitation allows representing the texture for rotation-invariant classification purposes. The two-dimensional classification problem is thus reconduced to a more simple one-dimensional one, which leads to a significant reduction of the classification procedure computational complexity.

Reduced complexity rotation invariant texture classification using a blind deconvolution approach / P., Campisi; Colonnese, Stefania; Gianpiero, Panci; Scarano, Gaetano. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - STAMPA. - 28:1(2006), pp. 145-149. [10.1109/tpami.2006.24]

Reduced complexity rotation invariant texture classification using a blind deconvolution approach

COLONNESE, Stefania;SCARANO, Gaetano
2006

Abstract

In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimensional autocorrelation function (ACF) of the binary excitation allows representing the texture for rotation-invariant classification purposes. The two-dimensional classification problem is thus reconduced to a more simple one-dimensional one, which leads to a significant reduction of the classification procedure computational complexity.
2006
feature moments; statistical texture model; texture analysis; texture classification
01 Pubblicazione su rivista::01a Articolo in rivista
Reduced complexity rotation invariant texture classification using a blind deconvolution approach / P., Campisi; Colonnese, Stefania; Gianpiero, Panci; Scarano, Gaetano. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - STAMPA. - 28:1(2006), pp. 145-149. [10.1109/tpami.2006.24]
File allegati a questo prodotto
File Dimensione Formato  
Campisi_Reduced-complexity_2006.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 449.74 kB
Formato Adobe PDF
449.74 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/232087
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact