The spectral properties of the Poincare operator associated with the advection-diffusion equation for partially chaotic periodic flows defined in bounded domains are analyzed in this Letter. For vanishingly small diffusivities (i.e., for the Peclet number tending to infinity) the dominant eigenvalue Lambda exhibits the scaling Lambdasimilar toPe(-alpha), where the exponent alphais an element of(0,1) depends on the global property of the flow (shape, geometry, and symmetry of quasiperiodic islands). The value of the exponent alpha is an indicator of qualitatively different transport mechanisms and depends on the localization properties of the corresponding eigenfunctions.
Spectral properties and transport mechanisms of partially chaotic bounded flows in the presence of diffusion / Giona, Massimiliano; Adrover, Alessandra; Cerbelli, Stefano; Vitacolonna, Valerio. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 92:11(2004), pp. 1-4. [10.1103/PhysRevLett.92.114101]
Spectral properties and transport mechanisms of partially chaotic bounded flows in the presence of diffusion
GIONA, Massimiliano
Primo
;ADROVER, AlessandraSecondo
;CERBELLI, Stefano;VITACOLONNA, VALERIO
2004
Abstract
The spectral properties of the Poincare operator associated with the advection-diffusion equation for partially chaotic periodic flows defined in bounded domains are analyzed in this Letter. For vanishingly small diffusivities (i.e., for the Peclet number tending to infinity) the dominant eigenvalue Lambda exhibits the scaling Lambdasimilar toPe(-alpha), where the exponent alphais an element of(0,1) depends on the global property of the flow (shape, geometry, and symmetry of quasiperiodic islands). The value of the exponent alpha is an indicator of qualitatively different transport mechanisms and depends on the localization properties of the corresponding eigenfunctions.File | Dimensione | Formato | |
---|---|---|---|
Giona_Spectral-properties-transport_2004.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
237.24 kB
Formato
Adobe PDF
|
237.24 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.