In this paper, we address the problem of location parameter estimation via a Generalized Method of Moments (GMM) approach. The general framework for the GMM estimation requires the minimization of a suitable, generally nonconvex, elliptic norm. Here we show that, if the estimandum is a shift parameter for a suitable statistic of the observations, a fast, DFT-based, computationally efficient procedure can be employed to perform the estimation. Besides we discuss the relation between the GMM estimation and the maximum likelihood (ML) estimation, showing that the GMM estimation rule provides a closed form ML estimator for shift parameters when the observations are multinomially distributed. As a case study, we analyze a GMM blind phase offset estimator for general quadrature amplitude modulation constellations. Simulation results and theoretical performance analysis show that the GMM estimator outperforms selected state of the art estimators, approaching the Cramer-Rao lower bound for a wide range of signal-to-noise ratio values.

Generalized method of moments estimation of location parameters: Application to blind phase acquisition / Colonnese, Stefania; Rinauro, Stefano; Scarano, Gaetano. - In: IEEE TRANSACTIONS ON SIGNAL PROCESSING. - ISSN 1053-587X. - STAMPA. - 58:9(2010), pp. 4735-4749. [10.1109/tsp.2010.2050316]

Generalized method of moments estimation of location parameters: Application to blind phase acquisition

COLONNESE, Stefania;RINAURO, STEFANO;SCARANO, Gaetano
2010

Abstract

In this paper, we address the problem of location parameter estimation via a Generalized Method of Moments (GMM) approach. The general framework for the GMM estimation requires the minimization of a suitable, generally nonconvex, elliptic norm. Here we show that, if the estimandum is a shift parameter for a suitable statistic of the observations, a fast, DFT-based, computationally efficient procedure can be employed to perform the estimation. Besides we discuss the relation between the GMM estimation and the maximum likelihood (ML) estimation, showing that the GMM estimation rule provides a closed form ML estimator for shift parameters when the observations are multinomially distributed. As a case study, we analyze a GMM blind phase offset estimator for general quadrature amplitude modulation constellations. Simulation results and theoretical performance analysis show that the GMM estimator outperforms selected state of the art estimators, approaching the Cramer-Rao lower bound for a wide range of signal-to-noise ratio values.
2010
generalized method of moments (gmm); location parameter; phase acquisition
01 Pubblicazione su rivista::01a Articolo in rivista
Generalized method of moments estimation of location parameters: Application to blind phase acquisition / Colonnese, Stefania; Rinauro, Stefano; Scarano, Gaetano. - In: IEEE TRANSACTIONS ON SIGNAL PROCESSING. - ISSN 1053-587X. - STAMPA. - 58:9(2010), pp. 4735-4749. [10.1109/tsp.2010.2050316]
File allegati a questo prodotto
File Dimensione Formato  
Colonnese_Generalized_2010.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/230440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact