The racemate of the chiral tricarbonyl-η6-arene-chromium(0) complex, tricarbonyl-η6-N-pivaloyl-tetrahydroquinoline-chromium(0), 1, has been synthesized and resolved using chromatography on a (R,R)-Whelk-O1 column. The Absolute Configuration (AC) of 1 has been determined using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of 1 has been predicted using the Stephens equation for vibrational rotational strengths, implemented using density functional theory (DFT) in the gaussian program. Using the B3PW91 functional and the 6-311++G (2d,2p) basis set, the predicted VCD spectrum of S-1 is in excellent agreement with the experimental VCD spectrum of (+)-1, leading unambiguously to the AC S-(+). It is concluded that VCD is a useful technique for determining the ACs of chiral organometallic complexes, given the use of optimum functionals and basis sets.
Determination of the absolute configurations of chiral organometallic complexes via density functional theory calculations of their vibrational circular dichroism spectra: The chiral chromium tricarbonyl complex of N-pivaloyl-tetrahydroquinoline / P. J., Stephens; F. J., Devlin; Villani, Claudio; Gasparrini, Francesco; S., LEVI MORTERA. - In: INORGANICA CHIMICA ACTA. - ISSN 0020-1693. - STAMPA. - 361:(2008), pp. 987-999. [10.1016/j.ica.2007.06.010]
Determination of the absolute configurations of chiral organometallic complexes via density functional theory calculations of their vibrational circular dichroism spectra: The chiral chromium tricarbonyl complex of N-pivaloyl-tetrahydroquinoline
VILLANI, Claudio;GASPARRINI, Francesco;
2008
Abstract
The racemate of the chiral tricarbonyl-η6-arene-chromium(0) complex, tricarbonyl-η6-N-pivaloyl-tetrahydroquinoline-chromium(0), 1, has been synthesized and resolved using chromatography on a (R,R)-Whelk-O1 column. The Absolute Configuration (AC) of 1 has been determined using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of 1 has been predicted using the Stephens equation for vibrational rotational strengths, implemented using density functional theory (DFT) in the gaussian program. Using the B3PW91 functional and the 6-311++G (2d,2p) basis set, the predicted VCD spectrum of S-1 is in excellent agreement with the experimental VCD spectrum of (+)-1, leading unambiguously to the AC S-(+). It is concluded that VCD is a useful technique for determining the ACs of chiral organometallic complexes, given the use of optimum functionals and basis sets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.