Bone repair was addressed in a critical-sized defect model in sheep, combining a ceramic biomaterial and mesenchymal progenitor cells. The defects in the tibial mid-diaphysis were treated with autologous bone or with a silicon-stabilized tricalcium phosphate biomaterial, implemented cor not by the addition of expanded bone marrow stromal cells. An internal locking compression plate and an external fixator were applied for stabilization. Radiographies were taken during the 8 months follow-up: the pixel grey levels of the lesion areas were determined to evaluate the repair process radiologically. Microradiography, histology and vascular density tests were performed. The autologous bone-treated group performed best, as assessed radiologically, within 20-24 weeks after surgery. Very limited healing was detected in the other experimental group: a partial bone deposition occurred at the periphery of the bony stumps only in the cell-seeded scaffolds. Interestingly, this effect ended within 20-24 weeks, as for the autologous bone, suggesting similar kinetics of the repair processes involved. Moreover, bone deposition was located where a significant reduction of the ceramic scaffold was detected. Faxitron microradiography and histology data confirmed these results. Vascular density analysis evidenced that cell-seeded scaffolds supported an increased vascular ingrowth. Thus, the interactions with the proper microenvironment and the oxygen and nutrient supply in the inner part of the constructs seem fundamental to initiate scaffold substitution and to improve cell performance in tissue-engineered approaches to bone repair. Copyright (C) 2008 John Wiley & Sons, Ltd.

Regeneration of large bone defects in sheep using bone marrow stromal cells / P., Giannoni; M., Mastrogiacomo; M., Alini; S. G., Pearce; Corsi, Alessandro; F., Santolini; A., Muraglia; Bianco, Paolo; R., Cancedda. - In: JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE. - ISSN 1932-6254. - 2:5(2008), pp. 253-262. [10.1002/term.90]

Regeneration of large bone defects in sheep using bone marrow stromal cells

CORSI, ALESSANDRO;BIANCO, Paolo;
2008

Abstract

Bone repair was addressed in a critical-sized defect model in sheep, combining a ceramic biomaterial and mesenchymal progenitor cells. The defects in the tibial mid-diaphysis were treated with autologous bone or with a silicon-stabilized tricalcium phosphate biomaterial, implemented cor not by the addition of expanded bone marrow stromal cells. An internal locking compression plate and an external fixator were applied for stabilization. Radiographies were taken during the 8 months follow-up: the pixel grey levels of the lesion areas were determined to evaluate the repair process radiologically. Microradiography, histology and vascular density tests were performed. The autologous bone-treated group performed best, as assessed radiologically, within 20-24 weeks after surgery. Very limited healing was detected in the other experimental group: a partial bone deposition occurred at the periphery of the bony stumps only in the cell-seeded scaffolds. Interestingly, this effect ended within 20-24 weeks, as for the autologous bone, suggesting similar kinetics of the repair processes involved. Moreover, bone deposition was located where a significant reduction of the ceramic scaffold was detected. Faxitron microradiography and histology data confirmed these results. Vascular density analysis evidenced that cell-seeded scaffolds supported an increased vascular ingrowth. Thus, the interactions with the proper microenvironment and the oxygen and nutrient supply in the inner part of the constructs seem fundamental to initiate scaffold substitution and to improve cell performance in tissue-engineered approaches to bone repair. Copyright (C) 2008 John Wiley & Sons, Ltd.
2008
bone repair; bone tissue engineering; cell differentiation; ceramic scaffold; in vivo test; mesenchymal stem cells
01 Pubblicazione su rivista::01a Articolo in rivista
Regeneration of large bone defects in sheep using bone marrow stromal cells / P., Giannoni; M., Mastrogiacomo; M., Alini; S. G., Pearce; Corsi, Alessandro; F., Santolini; A., Muraglia; Bianco, Paolo; R., Cancedda. - In: JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE. - ISSN 1932-6254. - 2:5(2008), pp. 253-262. [10.1002/term.90]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/229674
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 71
social impact