Marco Buratti has conjectured that, given an odd prime p and a multiset L containing p - 1 integers taken from {1,..., p-1/2}, there exists a Hamiltonian path in the complete graph with p vertices whose multiset of edge-lengths is equal to L modulo p. We give a positive answer to this conjecture in the case of multisets of the type {1(a),2(b),3(c)} by completely classifying such multisets that are linearly or cyclically realizable.

Hamiltonian paths in the complete graph with edge-lengths 1, 2, 3 / Capparelli, Stefano; DEL FRA, Alberto. - In: ELECTRONIC JOURNAL OF COMBINATORICS. - ISSN 1077-8926. - ELETTRONICO. - 17:1(2010), pp. 1-13.

Hamiltonian paths in the complete graph with edge-lengths 1, 2, 3

CAPPARELLI, Stefano;DEL FRA, ALBERTO
2010

Abstract

Marco Buratti has conjectured that, given an odd prime p and a multiset L containing p - 1 integers taken from {1,..., p-1/2}, there exists a Hamiltonian path in the complete graph with p vertices whose multiset of edge-lengths is equal to L modulo p. We give a positive answer to this conjecture in the case of multisets of the type {1(a),2(b),3(c)} by completely classifying such multisets that are linearly or cyclically realizable.
2010
multiset of differences; hamiltonian paths; graphs
01 Pubblicazione su rivista::01a Articolo in rivista
Hamiltonian paths in the complete graph with edge-lengths 1, 2, 3 / Capparelli, Stefano; DEL FRA, Alberto. - In: ELECTRONIC JOURNAL OF COMBINATORICS. - ISSN 1077-8926. - ELETTRONICO. - 17:1(2010), pp. 1-13.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/229658
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact