The Hermite polynomials can be defined through a second order differential equation with non constant coefficients, admitting two solutions one of which of non polynomial nature. The properties of this solution are studied here using an algebraic formalism, employing the techniques developed within the framework of the monomiality principle

The second solution of the Hermite equation and the monomiality formalism / Germano, Bruna; Dattoli, G; Martinelli, Maria Renata; Ricci, P. E.. - In: PURE MATHEMATICAL SCIENCES. - ISSN 1314-7560. - STAMPA. - 2:4(2013), pp. 147-152.

The second solution of the Hermite equation and the monomiality formalism

GERMANO, Bruna;MARTINELLI, Maria Renata;
2013

Abstract

The Hermite polynomials can be defined through a second order differential equation with non constant coefficients, admitting two solutions one of which of non polynomial nature. The properties of this solution are studied here using an algebraic formalism, employing the techniques developed within the framework of the monomiality principle
2013
Hermite equation, Monomiality principle, Nielsen polynomials
01 Pubblicazione su rivista::01a Articolo in rivista
The second solution of the Hermite equation and the monomiality formalism / Germano, Bruna; Dattoli, G; Martinelli, Maria Renata; Ricci, P. E.. - In: PURE MATHEMATICAL SCIENCES. - ISSN 1314-7560. - STAMPA. - 2:4(2013), pp. 147-152.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/229378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact