We prove a lower semicontinuity theorem for a polyconvex functional of integral form, related to maps $u:\Omega \subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ in $W^{1,n}(\Omega ;\mathbb{R}^{m})$ with $n\geq m\geq 2$, with respect to the weak $W^{1,p}$-convergence for $p>m-1$, without assuming any coercivity condition.
Weak lower semicontinuity for non coercive polyconvex integrals / Amar, Micol; DE CICCO, Virginia; Paolo, Marcellini; Elvira, Mascolo. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 1:2(2008), pp. 171-191. [10.1515/acv.2008.006]
Weak lower semicontinuity for non coercive polyconvex integrals
AMAR, Micol;DE CICCO, Virginia;
2008
Abstract
We prove a lower semicontinuity theorem for a polyconvex functional of integral form, related to maps $u:\Omega \subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ in $W^{1,n}(\Omega ;\mathbb{R}^{m})$ with $n\geq m\geq 2$, with respect to the weak $W^{1,p}$-convergence for $p>m-1$, without assuming any coercivity condition.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.