Eurocode 8 Part 3 (EC8-3) is devoted to assessment and retrofitting of existing buildings. In order to take into account the uncertainty in the knowledge of structural properties, EC8-3 defines, analogously to the ordinary material partial factors, an adjustment factor, called oconfidence factor (CF),o whose value depends on the level of knowledge (KL) of properties such as geometry, reinforcement layout and detailing, and materials. This solution is plausible from a logical point of view but it cannot yet profit from the experience of its use in practice, hence it needs to be substantiated by a higher level probabilistic analysis accounting for and propagating epistemic uncertainty (i.e., incomplete knowledge of a structure) throughout the seismic assessment procedure. This article investigates the soundness of the format proposed in EC8-3. The approach taken rests on the simulation of the entire assessment procedure and the evaluation of the distribution of the assessment results (distance from the limit state of interest) conditional on the acquired knowledge. Based on this distribution, a criterion is employed to calibrate the CF values. The obtained values are then critically examined and compared with code-specified ones. The results pinpoint a number of deficiencies that appear to somewhat invalidate the approach. The methodological significance of the work extends beyond the assessment procedure in EC8-3, since similar factors appear in other international guidelines (e.g., the knowledge factor of FEMA356).
Confidence Factor? / Franchin, Paolo; Pinto, Paolo Emilio; Pathmanathan, Rajeev. - In: JOURNAL OF EARTHQUAKE ENGINEERING. - ISSN 1363-2469. - STAMPA. - 14:7(2010), pp. 989-1007. [10.1080/13632460903527948]
Confidence Factor?
FRANCHIN, Paolo;
2010
Abstract
Eurocode 8 Part 3 (EC8-3) is devoted to assessment and retrofitting of existing buildings. In order to take into account the uncertainty in the knowledge of structural properties, EC8-3 defines, analogously to the ordinary material partial factors, an adjustment factor, called oconfidence factor (CF),o whose value depends on the level of knowledge (KL) of properties such as geometry, reinforcement layout and detailing, and materials. This solution is plausible from a logical point of view but it cannot yet profit from the experience of its use in practice, hence it needs to be substantiated by a higher level probabilistic analysis accounting for and propagating epistemic uncertainty (i.e., incomplete knowledge of a structure) throughout the seismic assessment procedure. This article investigates the soundness of the format proposed in EC8-3. The approach taken rests on the simulation of the entire assessment procedure and the evaluation of the distribution of the assessment results (distance from the limit state of interest) conditional on the acquired knowledge. Based on this distribution, a criterion is employed to calibrate the CF values. The obtained values are then critically examined and compared with code-specified ones. The results pinpoint a number of deficiencies that appear to somewhat invalidate the approach. The methodological significance of the work extends beyond the assessment procedure in EC8-3, since similar factors appear in other international guidelines (e.g., the knowledge factor of FEMA356).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.