We want to explain some formulas appearing in connection with root systems and their zonotopes which are relevant for the theory of the Kostant partition function. In particular, we compute explicitly the Tutte polynomial for all exceptional root systems. A more systematic treatment of these topics will appear in a forthcoming book Topics in Hyperplane Arrangements, Polytopes and Box-Splines.

THE ZONOTOPE OF A ROOT SYSTEM / DE CONCINI, Corrado; Procesi, Claudio. - In: TRANSFORMATION GROUPS. - ISSN 1083-4362. - 13:3-4(2008), pp. 507-526. [10.1007/s00031-008-9031-z]

THE ZONOTOPE OF A ROOT SYSTEM

DE CONCINI, Corrado;PROCESI, Claudio
2008

Abstract

We want to explain some formulas appearing in connection with root systems and their zonotopes which are relevant for the theory of the Kostant partition function. In particular, we compute explicitly the Tutte polynomial for all exceptional root systems. A more systematic treatment of these topics will appear in a forthcoming book Topics in Hyperplane Arrangements, Polytopes and Box-Splines.
2008
01 Pubblicazione su rivista::01a Articolo in rivista
THE ZONOTOPE OF A ROOT SYSTEM / DE CONCINI, Corrado; Procesi, Claudio. - In: TRANSFORMATION GROUPS. - ISSN 1083-4362. - 13:3-4(2008), pp. 507-526. [10.1007/s00031-008-9031-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/226270
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact