We consider a stochastically perturbed reaction diffusion equation in a bounded interval, with boundary conditions imposing the two stable phases at the endpoints. We investigate the asymptotic behavior of the front separating the two stable phases, as the intensity of the noise vanishes and the size of the interval diverges. In particular, we prove that, in a suitable scaling limit, the front evolves according to a one-dimensional diffusion process with a non-linear drift accounting for a "soft" repulsion from the boundary. We finally show how a "hard" repulsion can be obtained by an extra diffusive scaling. © 2008 Springer-Verlag.

Soft and hard wall in a stochastic reaction diffusion equation / BERTINI MALGARINI, Lorenzo; Stella, Brassesco; Butta', Paolo. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 190:2(2008), pp. 307-345. [10.1007/s00205-008-0154-0]

Soft and hard wall in a stochastic reaction diffusion equation

BERTINI MALGARINI, Lorenzo;BUTTA', Paolo
2008

Abstract

We consider a stochastically perturbed reaction diffusion equation in a bounded interval, with boundary conditions imposing the two stable phases at the endpoints. We investigate the asymptotic behavior of the front separating the two stable phases, as the intensity of the noise vanishes and the size of the interval diverges. In particular, we prove that, in a suitable scaling limit, the front evolves according to a one-dimensional diffusion process with a non-linear drift accounting for a "soft" repulsion from the boundary. We finally show how a "hard" repulsion can be obtained by an extra diffusive scaling. © 2008 Springer-Verlag.
2008
01 Pubblicazione su rivista::01a Articolo in rivista
Soft and hard wall in a stochastic reaction diffusion equation / BERTINI MALGARINI, Lorenzo; Stella, Brassesco; Butta', Paolo. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 190:2(2008), pp. 307-345. [10.1007/s00205-008-0154-0]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/225818
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact