The chemokine CX3CL1 is constitutively expressed in the central nervous system by neurons and astrocytes controlling neuronal survival and neurotransmission. In this work, we analyzed the expression and function of the chemokine CX3CL1 and its receptor, CX3CR1, by human glioma cells. We show that both molecules are expressed on the tumor cell plasma membrane and that soluble CX3CL1 accumulates in the culture supernatants, indicating that the chemokine is constitutively released. We found that CX3CR1 is functional, as all the cell lines adhered to immobilized recombinant CX3CL1 and migrated in response to the soluble form of this chemokine. In addition, the blockade of endogenous CX3CL1 function by means of a neutralizing monoclonal antibody markedly delayed tumor cell aggregation and increased their invasiveness. We also show that CX3CL1 expression is potently modulated by the transforming growth factor-beta1 (TGF-beta1), a key regulator of glioma cell invasiveness. Indeed, both the treatment of glioma cells with recombinant TGF-beta1 and the inhibition of its endogenous expression by siRNA showed that TGF-beta1 decreases CX3CL1 mRNA and protein expression. Overall, our results indicate that endogenously expressed CX3CL1 negatively regulates glioma invasion likely by promoting tumor cell aggregation, and that TGF-beta1 inhibition of CX3CL1 expression might contribute to glioma cell invasive properties. © The Author(s) 2010.

CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-beta1 / Sciume', Giuseppe; Soriani, Alessandra; Piccoli, Mario; Frati, Luigi; Santoni, Angela; Bernardini, Giovanni. - In: NEURO-ONCOLOGY. - ISSN 1522-8517. - STAMPA. - 12:7(2010), pp. 701-710. [10.1093/neuonc/nop076]

CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-beta1

SCIUME', GIUSEPPE;SORIANI, Alessandra;PICCOLI, Mario;FRATI, Luigi;SANTONI, Angela;BERNARDINI, Giovanni
2010

Abstract

The chemokine CX3CL1 is constitutively expressed in the central nervous system by neurons and astrocytes controlling neuronal survival and neurotransmission. In this work, we analyzed the expression and function of the chemokine CX3CL1 and its receptor, CX3CR1, by human glioma cells. We show that both molecules are expressed on the tumor cell plasma membrane and that soluble CX3CL1 accumulates in the culture supernatants, indicating that the chemokine is constitutively released. We found that CX3CR1 is functional, as all the cell lines adhered to immobilized recombinant CX3CL1 and migrated in response to the soluble form of this chemokine. In addition, the blockade of endogenous CX3CL1 function by means of a neutralizing monoclonal antibody markedly delayed tumor cell aggregation and increased their invasiveness. We also show that CX3CL1 expression is potently modulated by the transforming growth factor-beta1 (TGF-beta1), a key regulator of glioma cell invasiveness. Indeed, both the treatment of glioma cells with recombinant TGF-beta1 and the inhibition of its endogenous expression by siRNA showed that TGF-beta1 decreases CX3CL1 mRNA and protein expression. Overall, our results indicate that endogenously expressed CX3CL1 negatively regulates glioma invasion likely by promoting tumor cell aggregation, and that TGF-beta1 inhibition of CX3CL1 expression might contribute to glioma cell invasive properties. © The Author(s) 2010.
2010
cx3cl1; cx3cr1; glioma; invasion; tgf-beta1
01 Pubblicazione su rivista::01a Articolo in rivista
CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-beta1 / Sciume', Giuseppe; Soriani, Alessandra; Piccoli, Mario; Frati, Luigi; Santoni, Angela; Bernardini, Giovanni. - In: NEURO-ONCOLOGY. - ISSN 1522-8517. - STAMPA. - 12:7(2010), pp. 701-710. [10.1093/neuonc/nop076]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/225667
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 54
social impact