We show that the maximum number of ternary sequences of length n such that no two of them feature all the three symbol pairs in their coordinates is 2 (n+o(n)). In fact, we present a far more general theorem about problems of a similar nature. We explore the connections of our results to those on zero-error capacity of graph families. © 2010 Springer.

Forbiddance and Capacity / Fachini, Emanuela; Korner, Janos. - In: GRAPHS AND COMBINATORICS. - ISSN 0911-0119. - STAMPA. - 27:4(2011), pp. 495-503. [10.1007/s00373-010-0987-9]

Forbiddance and Capacity

FACHINI, Emanuela;KORNER, JANOS
2011

Abstract

We show that the maximum number of ternary sequences of length n such that no two of them feature all the three symbol pairs in their coordinates is 2 (n+o(n)). In fact, we present a far more general theorem about problems of a similar nature. We explore the connections of our results to those on zero-error capacity of graph families. © 2010 Springer.
2011
graph capacity; graph families; information theory; intersection theorems
01 Pubblicazione su rivista::01a Articolo in rivista
Forbiddance and Capacity / Fachini, Emanuela; Korner, Janos. - In: GRAPHS AND COMBINATORICS. - ISSN 0911-0119. - STAMPA. - 27:4(2011), pp. 495-503. [10.1007/s00373-010-0987-9]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/225316
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact