Transgenic mice with cardiac-specific over-expression of tumor necrosis factor-a (TNF1.6) progress to dilated heart failure. A significant inflammatory response precedes functional deterioration, and may contribute to cardiac damage in this model. To evaluate the underlying molecular mechanisms, we assessed the gene expression in six groups of mouse hearts defined by age, gender, and phenotype (n = 3/group) using Affymetrix microarray analysis. Phenotype was defined as compensated (in young TNF1.6) or decompensated (in older TNF1.6) via echocardiogram. Of the >1000 transcripts altered in the compensated hearts (fold change > 2, P < 0.05 vs. wild-type (WT)), 102 were identified as immune response genes, 20 of which function in antigen presentation and processing. When comparing the compensated and decompensated hearts, >50 genes were differentially regulated, including seven immunoglobulin genes. Real-time reverse transcriptasepolymerase chain reaction and cDNA microarray confirmed the Affymetrix data. Mac3+ macrophages, CD4+ T and CD45/B220+ B-cells were identified in both compensated and decompensated hearts. However, a large amount of IgG was found deposited in areas devoid of B-lymphocytes in the myocardium of decompensated TNF1.6 mice; no such accumulation was seen in the compensated or age-matched controls. Furthermore, nuclei density analyses showed a two-fold increase in the myocardium of both compensated and decompensated TNF1.6 mice (vs. WT). This study suggests that TNF-a over-expression activates not only the inflammatory response, but also humoral immune responses within the transgenic hearts. The autoimmune response occurs concomitantly with cardiac decompensation and may participate in triggering the transition to failure in TNF1.6 mice.
Gene expression profiling during the transition to failure in TNF-a over-expressing mice demonstrates the development of autoimmune myocarditis / Tang, Z; Mcgowan, B; Huber, Sa; Mctiernan, Cf; Addya, S; Surrey, S; Kubota, T; Fortina, Paolo; Higuchi, Y; Diamond, M; Wyre, Ds; Feldman, A. M.. - In: JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY. - ISSN 0022-2828. - STAMPA. - 36:(2004), pp. 515-530. [10.1016/j.yjmcc.2004.01.008]
Gene expression profiling during the transition to failure in TNF-a over-expressing mice demonstrates the development of autoimmune myocarditis.
FORTINA, PAOLO;
2004
Abstract
Transgenic mice with cardiac-specific over-expression of tumor necrosis factor-a (TNF1.6) progress to dilated heart failure. A significant inflammatory response precedes functional deterioration, and may contribute to cardiac damage in this model. To evaluate the underlying molecular mechanisms, we assessed the gene expression in six groups of mouse hearts defined by age, gender, and phenotype (n = 3/group) using Affymetrix microarray analysis. Phenotype was defined as compensated (in young TNF1.6) or decompensated (in older TNF1.6) via echocardiogram. Of the >1000 transcripts altered in the compensated hearts (fold change > 2, P < 0.05 vs. wild-type (WT)), 102 were identified as immune response genes, 20 of which function in antigen presentation and processing. When comparing the compensated and decompensated hearts, >50 genes were differentially regulated, including seven immunoglobulin genes. Real-time reverse transcriptasepolymerase chain reaction and cDNA microarray confirmed the Affymetrix data. Mac3+ macrophages, CD4+ T and CD45/B220+ B-cells were identified in both compensated and decompensated hearts. However, a large amount of IgG was found deposited in areas devoid of B-lymphocytes in the myocardium of decompensated TNF1.6 mice; no such accumulation was seen in the compensated or age-matched controls. Furthermore, nuclei density analyses showed a two-fold increase in the myocardium of both compensated and decompensated TNF1.6 mice (vs. WT). This study suggests that TNF-a over-expression activates not only the inflammatory response, but also humoral immune responses within the transgenic hearts. The autoimmune response occurs concomitantly with cardiac decompensation and may participate in triggering the transition to failure in TNF1.6 mice.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.