In this paper we consider the problem {-Delta u = u(q alpha)vertical bar del u vertical bar(q) +lambda f(x) in Omega u = 0 on partial derivative Omega , (P) where Omega subset of R(N) is a bounded domain, 1 < q <= 2, alpha is an element of R and f >= 0. We prove that: (1) If q alpha < -1, then problem (P) has a distributional solution for all f is an element of L(1)(Omega), and all lambda > 0. (2) If -1 <= q alpha < 0, then problem (P) has a solution for all f is an element of L(s)(Omega), where s > N/q if N >= 2, and without any restriction on lambda. (3) If q = 2 and -1 <= q alpha < 0 then problem (P) has infinitely many solutions under suitable hypotheses on f. (4) If 0 <= q alpha and f is an element of L(1)(Omega) satisfies lambda 1 (f) = inf (phi is an element of W01,2(Omega)) integral(Omega)vertical bar del phi vertical bar(2)dx/integral(Omega)f phi(2)dx > 0, then problem (P) has a positive solution if 0 < lambda < lambda(1)(f) and no positive solution for large lambda. (C) 2010 Elsevier Ltd. All rights reserved.

Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary / Boumediene, Abdellaoui; Giachetti, Daniela; Ireneo, Peral; Magdalena, Walias. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 74:4(2011), pp. 1355-1371. [10.1016/j.na.2010.10.008]

Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary

GIACHETTI, Daniela;
2011

Abstract

In this paper we consider the problem {-Delta u = u(q alpha)vertical bar del u vertical bar(q) +lambda f(x) in Omega u = 0 on partial derivative Omega , (P) where Omega subset of R(N) is a bounded domain, 1 < q <= 2, alpha is an element of R and f >= 0. We prove that: (1) If q alpha < -1, then problem (P) has a distributional solution for all f is an element of L(1)(Omega), and all lambda > 0. (2) If -1 <= q alpha < 0, then problem (P) has a solution for all f is an element of L(s)(Omega), where s > N/q if N >= 2, and without any restriction on lambda. (3) If q = 2 and -1 <= q alpha < 0 then problem (P) has infinitely many solutions under suitable hypotheses on f. (4) If 0 <= q alpha and f is an element of L(1)(Omega) satisfies lambda 1 (f) = inf (phi is an element of W01,2(Omega)) integral(Omega)vertical bar del phi vertical bar(2)dx/integral(Omega)f phi(2)dx > 0, then problem (P) has a positive solution if 0 < lambda < lambda(1)(f) and no positive solution for large lambda. (C) 2010 Elsevier Ltd. All rights reserved.
2011
dependence on the gradient; elliptic equations; singular nonlinearities
01 Pubblicazione su rivista::01a Articolo in rivista
Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary / Boumediene, Abdellaoui; Giachetti, Daniela; Ireneo, Peral; Magdalena, Walias. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 74:4(2011), pp. 1355-1371. [10.1016/j.na.2010.10.008]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/22268
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact