We derive two second-order algorithms, based on the conjugate gradient method, for online training of recurrent neural networks. These algorithms use two different techniques to extract second-order information on the Hessian matrix without calculating or storing it and without making numerical approximations. Several simulation results for nonlinear system identification tests by locally recurrent neural networks are reported for both the off-line and online case.

New second-order algorithms for recurrent neural networks based on conjugate gradient / Campolucci, P; Simonetti, M; Uncini, Aurelio; Piazza, F.. - 1:(1998), pp. 384-389. [10.1109/IJCNN.1998.682297]

New second-order algorithms for recurrent neural networks based on conjugate gradient

UNCINI, Aurelio;
1998

Abstract

We derive two second-order algorithms, based on the conjugate gradient method, for online training of recurrent neural networks. These algorithms use two different techniques to extract second-order information on the Hessian matrix without calculating or storing it and without making numerical approximations. Several simulation results for nonlinear system identification tests by locally recurrent neural networks are reported for both the off-line and online case.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/212617
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact