In this paper we address the problem of scale parameter estimation, introducing a reduced complexity Maximum Likelihood (ML) estimation procedure. The estimator stems from the observation that, when the estimandum acts as a shift parameter on a multinomially distributed statistic, direct maximization of the likelihood function can be conducted by an efficient DFT based procedure. A suitable exponential warping of the observation's domain is known to transform a scale parameter problem into a shift estimation problem, thus allowing the afore mentioned reduced complexity ML estimation for shift parameter to be applied also in scale parameter estimation problems. As a case study, we analyze a gain estimator for general QAM constellations. Simulation results and theoretical performance analysis show that the herein presented estimator outperforms selected state of the art high order moments estimator, approaching the Craḿer- Rao Lower Bound (CRLB) for a wide range of SNR. © EURASIP, 2010.

Maximum likelihood scale parameter estimation: An application to gain estimation for QAM constellations / Colonnese, Stefania; Rinauro, Stefano; Scarano, Gaetano. - (2010), pp. 1582-1586. (Intervento presentato al convegno 18th European Signal Processing Conference, EUSIPCO 2010 tenutosi a Aalborg; Denmark).

Maximum likelihood scale parameter estimation: An application to gain estimation for QAM constellations

COLONNESE, Stefania;RINAURO, STEFANO;SCARANO, Gaetano
2010

Abstract

In this paper we address the problem of scale parameter estimation, introducing a reduced complexity Maximum Likelihood (ML) estimation procedure. The estimator stems from the observation that, when the estimandum acts as a shift parameter on a multinomially distributed statistic, direct maximization of the likelihood function can be conducted by an efficient DFT based procedure. A suitable exponential warping of the observation's domain is known to transform a scale parameter problem into a shift estimation problem, thus allowing the afore mentioned reduced complexity ML estimation for shift parameter to be applied also in scale parameter estimation problems. As a case study, we analyze a gain estimator for general QAM constellations. Simulation results and theoretical performance analysis show that the herein presented estimator outperforms selected state of the art high order moments estimator, approaching the Craḿer- Rao Lower Bound (CRLB) for a wide range of SNR. © EURASIP, 2010.
2010
18th European Signal Processing Conference, EUSIPCO 2010
Message passing; Synchronization; Carrier synchronization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Maximum likelihood scale parameter estimation: An application to gain estimation for QAM constellations / Colonnese, Stefania; Rinauro, Stefano; Scarano, Gaetano. - (2010), pp. 1582-1586. (Intervento presentato al convegno 18th European Signal Processing Conference, EUSIPCO 2010 tenutosi a Aalborg; Denmark).
File allegati a questo prodotto
File Dimensione Formato  
Colonnese_Maximum_2010.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 582.31 kB
Formato Adobe PDF
582.31 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/207259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact