In this paper we address the problem of scale parameter estimation, introducing a reduced complexity Maximum Likelihood (ML) estimation procedure. The estimator stems from the observation that, when the estimandum acts as a shift parameter on a multinomially distributed statistic, direct maximization of the likelihood function can be conducted by an efficient DFT based procedure. A suitable exponential warping of the observation's domain is known to transform a scale parameter problem into a shift estimation problem, thus allowing the afore mentioned reduced complexity ML estimation for shift parameter to be applied also in scale parameter estimation problems. As a case study, we analyze a gain estimator for general QAM constellations. Simulation results and theoretical performance analysis show that the herein presented estimator outperforms selected state of the art high order moments estimator, approaching the Craḿer- Rao Lower Bound (CRLB) for a wide range of SNR. © EURASIP, 2010.
Maximum likelihood scale parameter estimation: An application to gain estimation for QAM constellations / Colonnese, Stefania; Rinauro, Stefano; Scarano, Gaetano. - (2010), pp. 1582-1586. (Intervento presentato al convegno 18th European Signal Processing Conference, EUSIPCO 2010 tenutosi a Aalborg; Denmark).
Maximum likelihood scale parameter estimation: An application to gain estimation for QAM constellations
COLONNESE, Stefania;RINAURO, STEFANO;SCARANO, Gaetano
2010
Abstract
In this paper we address the problem of scale parameter estimation, introducing a reduced complexity Maximum Likelihood (ML) estimation procedure. The estimator stems from the observation that, when the estimandum acts as a shift parameter on a multinomially distributed statistic, direct maximization of the likelihood function can be conducted by an efficient DFT based procedure. A suitable exponential warping of the observation's domain is known to transform a scale parameter problem into a shift estimation problem, thus allowing the afore mentioned reduced complexity ML estimation for shift parameter to be applied also in scale parameter estimation problems. As a case study, we analyze a gain estimator for general QAM constellations. Simulation results and theoretical performance analysis show that the herein presented estimator outperforms selected state of the art high order moments estimator, approaching the Craḿer- Rao Lower Bound (CRLB) for a wide range of SNR. © EURASIP, 2010.File | Dimensione | Formato | |
---|---|---|---|
Colonnese_Maximum_2010.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
582.31 kB
Formato
Adobe PDF
|
582.31 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.