Computational linguistics has largely focussed on written and spoken textual languages. However, humans use many other kinds of symbolic notations for communication, in particular, two-dimensional graphical notations such as mathematical notation, choreography notation, organizational charts and electrical circuit diagrams. We can term such multi-dimensional symbolic notations, visual languages. Like textual languages, many of these notations have a well defined syntax and semantics. The standard approach to computer interpretation of visual languages is to utilize parsing technologies based on multi-dimensional grammars. In this paper we investigate a new approach to parsing visual languages based on linear logic. The advantages of this logic-based approach are threefold: It provides a more adequate level for modelling the semantics of visual languages; it allows us to implement them based on automated deduction and it provides a good basis for the investigation of their formal properties. We show how attributed multiset grammars, one of the most widely used methods for multi-dimensional parsing, can be embedded into linear logic, demonstrate how parsing corresponds to linear proofs and prove the soundness and correctness of this embedding. Importantly, our embedding is into a subset of a linear logic programming language. Thus, we also demonstrate how multi-dimensional parsing can be implemented as a directly executable linear logic program.
Deductive Parsing of Visual Languages / Bottoni, Paolo Gaspare; B., Meyer; K., Marriott; PARISI PRESICCE, Francesco. - STAMPA. - LNAI 2099:(2001), pp. 79-94. (Intervento presentato al convegno 4th International Conference, LACL 2001 tenutosi a Le Croisic, France; nel 27-29/6/2001) [10.1007/3-540-48199-0_5].
Deductive Parsing of Visual Languages
BOTTONI, Paolo Gaspare;PARISI PRESICCE, Francesco
2001
Abstract
Computational linguistics has largely focussed on written and spoken textual languages. However, humans use many other kinds of symbolic notations for communication, in particular, two-dimensional graphical notations such as mathematical notation, choreography notation, organizational charts and electrical circuit diagrams. We can term such multi-dimensional symbolic notations, visual languages. Like textual languages, many of these notations have a well defined syntax and semantics. The standard approach to computer interpretation of visual languages is to utilize parsing technologies based on multi-dimensional grammars. In this paper we investigate a new approach to parsing visual languages based on linear logic. The advantages of this logic-based approach are threefold: It provides a more adequate level for modelling the semantics of visual languages; it allows us to implement them based on automated deduction and it provides a good basis for the investigation of their formal properties. We show how attributed multiset grammars, one of the most widely used methods for multi-dimensional parsing, can be embedded into linear logic, demonstrate how parsing corresponds to linear proofs and prove the soundness and correctness of this embedding. Importantly, our embedding is into a subset of a linear logic programming language. Thus, we also demonstrate how multi-dimensional parsing can be implemented as a directly executable linear logic program.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.