The fundamental understanding of the dynamic interactions between multiphase flow in the reservoir and that in the wellbore remains surprisingly weak. The classical way of dealing with these interactions is via inflow performance relationships (IPR's), where the inflow from the reservoir is related to the pressure at the bottom of the well, which is a function of the multiphase flow behaviour in the well. Steady-state IPR's are normally adopted, but their use may be erroneous when transient multiphase flow conditions occur. Transient multiphase flow in the wellbore causes problems in well test interpretation when the well is shut-in at surface and the bottomhole pressure is measured. Pressure build-up (PBU) data recorded during a test can be dominated by transient wellbore effects (e.g. phase change, flow reversal and re-entry of the denser phase into the producing zone), making it difficult to distinguish between true reservoir features and transient wellbore artefacts. This paper introduces a method to derive the transient IPR's at bottomhole conditions in order to link the wellbore to the reservoir during PBU. A commercial numerical simulator was used to build a simplified reservoir model (single well, radial co-ordinates, homogeneous rock properties) using published data from a gas condensate field in the North Sea. In order to exclude wellbore effects from the investigation of the transient inflow from the reservoir, the simulation of the wellbore was omitted from the model. Rather than the traditional flow rate at surface conditions, bottomhole pressure was imposed to constrain the simulation. This procedure allowed the flow rate at the sand face to be different from zero during the early times of the PBU, even if the surface flow rate is equal to zero. As a result, a transient IPR at bottomhole conditions was obtained for the given field case and for a specific set of time intervals, time steps and bottomhole pressure. In order to validate the above simulation approach, a preliminary evaluation of the required experimental set-up was carried out. The set-up would allow the investigation of the dynamic interaction between the reservoir, the near-wellbore region and the well, represented by a pressured vessel, a cylindrical porous medium and a vertical pipe, respectively. Copyright © 2007 by ASME.

Using transient inflow performance relationships to model the dynamic interaction between reservoir and wellbore during pressure testing / Aldo, Costantini; Gioia, Falcone; Geoffrey F., Hewitt; Alimonti, Claudio. - 2:(2007), pp. 813-821. (Intervento presentato al convegno 26th International Conference on Offshore Mechanics and Arctic Engineering 2007, OMAE2007 tenutosi a San Diego, CA nel 10 June 2007 through 15 June 2007) [10.1115/omae2007-29524].

Using transient inflow performance relationships to model the dynamic interaction between reservoir and wellbore during pressure testing

ALIMONTI, Claudio
2007

Abstract

The fundamental understanding of the dynamic interactions between multiphase flow in the reservoir and that in the wellbore remains surprisingly weak. The classical way of dealing with these interactions is via inflow performance relationships (IPR's), where the inflow from the reservoir is related to the pressure at the bottom of the well, which is a function of the multiphase flow behaviour in the well. Steady-state IPR's are normally adopted, but their use may be erroneous when transient multiphase flow conditions occur. Transient multiphase flow in the wellbore causes problems in well test interpretation when the well is shut-in at surface and the bottomhole pressure is measured. Pressure build-up (PBU) data recorded during a test can be dominated by transient wellbore effects (e.g. phase change, flow reversal and re-entry of the denser phase into the producing zone), making it difficult to distinguish between true reservoir features and transient wellbore artefacts. This paper introduces a method to derive the transient IPR's at bottomhole conditions in order to link the wellbore to the reservoir during PBU. A commercial numerical simulator was used to build a simplified reservoir model (single well, radial co-ordinates, homogeneous rock properties) using published data from a gas condensate field in the North Sea. In order to exclude wellbore effects from the investigation of the transient inflow from the reservoir, the simulation of the wellbore was omitted from the model. Rather than the traditional flow rate at surface conditions, bottomhole pressure was imposed to constrain the simulation. This procedure allowed the flow rate at the sand face to be different from zero during the early times of the PBU, even if the surface flow rate is equal to zero. As a result, a transient IPR at bottomhole conditions was obtained for the given field case and for a specific set of time intervals, time steps and bottomhole pressure. In order to validate the above simulation approach, a preliminary evaluation of the required experimental set-up was carried out. The set-up would allow the investigation of the dynamic interaction between the reservoir, the near-wellbore region and the well, represented by a pressured vessel, a cylindrical porous medium and a vertical pipe, respectively. Copyright © 2007 by ASME.
2007
26th International Conference on Offshore Mechanics and Arctic Engineering 2007, OMAE2007
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Using transient inflow performance relationships to model the dynamic interaction between reservoir and wellbore during pressure testing / Aldo, Costantini; Gioia, Falcone; Geoffrey F., Hewitt; Alimonti, Claudio. - 2:(2007), pp. 813-821. (Intervento presentato al convegno 26th International Conference on Offshore Mechanics and Arctic Engineering 2007, OMAE2007 tenutosi a San Diego, CA nel 10 June 2007 through 15 June 2007) [10.1115/omae2007-29524].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/202565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact