In this paper we give a characterization of just infinite Lie subalgebras of a loop algebra in terms of the existence of certain ideals and in terms of the existence of certain nontrivial L-endomorphisms of positive degree. Such an algebra has a faithful representation of finite degree over the ring of polynomials with coefficients in the ground field, and is shown to be ideally r-constrained for a suitable r. An upper bound for r is given in the solvable case.

Just infinite periodic Lie algebras / N., Gavioli; Monti, Valerio; C. M., Scoppola. - STAMPA. - (2004), pp. 73-85. (Intervento presentato al convegno Proceedings of the Gainesville conference on finite groups, March 6-12, 2003 tenutosi a Gainesville nel March 2003).

Just infinite periodic Lie algebras

MONTI, Valerio;
2004

Abstract

In this paper we give a characterization of just infinite Lie subalgebras of a loop algebra in terms of the existence of certain ideals and in terms of the existence of certain nontrivial L-endomorphisms of positive degree. Such an algebra has a faithful representation of finite degree over the ring of polynomials with coefficients in the ground field, and is shown to be ideally r-constrained for a suitable r. An upper bound for r is given in the solvable case.
2004
Proceedings of the Gainesville conference on finite groups, March 6-12, 2003
Lie Algebras; Loop algebras; Periodicity
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Just infinite periodic Lie algebras / N., Gavioli; Monti, Valerio; C. M., Scoppola. - STAMPA. - (2004), pp. 73-85. (Intervento presentato al convegno Proceedings of the Gainesville conference on finite groups, March 6-12, 2003 tenutosi a Gainesville nel March 2003).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/194240
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact