In this paper we establish the relationships between theta functions of arbitrary order and their derivatives. We generalize our previous work [4] and prove that for any n > 1 the map sending an abelian variety to the set of Gauss images of its points of order 2n is an embedding into an appropriate Grassmannian (note that for n = 1 we only got generic injectivity in [4]). We further discuss the generalizations of Jacobi's derivative formula for any dimension and any order.

Theta functions of arbitrary order and their derivatives / Samuel, Grushevsky; SALVATI MANNI, Riccardo. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - STAMPA. - 590:590(2006), pp. 31-43. [10.1515/crelle.2006.002]

Theta functions of arbitrary order and their derivatives

SALVATI MANNI, Riccardo
2006

Abstract

In this paper we establish the relationships between theta functions of arbitrary order and their derivatives. We generalize our previous work [4] and prove that for any n > 1 the map sending an abelian variety to the set of Gauss images of its points of order 2n is an embedding into an appropriate Grassmannian (note that for n = 1 we only got generic injectivity in [4]). We further discuss the generalizations of Jacobi's derivative formula for any dimension and any order.
2006
01 Pubblicazione su rivista::01a Articolo in rivista
Theta functions of arbitrary order and their derivatives / Samuel, Grushevsky; SALVATI MANNI, Riccardo. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - STAMPA. - 590:590(2006), pp. 31-43. [10.1515/crelle.2006.002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/19419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact