We study Hopf-Lax formulas and invariant measures in the context of idempotent analysis. We show that idempotent analogue of the semigroup associated with the Ornstein-Uhlenbeck operator has a particularly simple invariant measure, and how this observation can be used in the analysis of the Hopf-Lax semigroup and viscosity solutions of the Hamilton-Jacobi equations. Further we introduce adjoint operators with respect to the Hopf- Lax semigroup and study their properties in the special case when the initial data of the Cauchy problem are linear functions.

Idempotent Aspects of Hopf-Lax Type Formulas / Avantaggiati, A; Loreti, Paola. - 495:(2009), pp. 103-114. (Intervento presentato al convegno International workshop TROPICAL-07 Tropical and Idempotent Mathematics tenutosi a Moscow; Russia nel August 25-30, 2007).

Idempotent Aspects of Hopf-Lax Type Formulas

LORETI, Paola
2009

Abstract

We study Hopf-Lax formulas and invariant measures in the context of idempotent analysis. We show that idempotent analogue of the semigroup associated with the Ornstein-Uhlenbeck operator has a particularly simple invariant measure, and how this observation can be used in the analysis of the Hopf-Lax semigroup and viscosity solutions of the Hamilton-Jacobi equations. Further we introduce adjoint operators with respect to the Hopf- Lax semigroup and study their properties in the special case when the initial data of the Cauchy problem are linear functions.
2009
International workshop TROPICAL-07 Tropical and Idempotent Mathematics
Idempotent mathematics
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Idempotent Aspects of Hopf-Lax Type Formulas / Avantaggiati, A; Loreti, Paola. - 495:(2009), pp. 103-114. (Intervento presentato al convegno International workshop TROPICAL-07 Tropical and Idempotent Mathematics tenutosi a Moscow; Russia nel August 25-30, 2007).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/189643
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact