Describes an algorithm for improving the performance of unknown proper noun recognizers, using a statistical framework. We present a bootstrapping technique that starts out by using a training set to acquire contextual classification cues, and then uses the results of the initial phase to acquire additional training data from an unlabeled corpus. The training set (tagged proper nouns in contexts) is obtained trough an application of standard knowledge-based techniques for proper noun tagging, commonly used in information extraction systems.

A Statistical Technique for Bootstrapping Available Resources for Proper Nouns Classification / A., Cucchiarelli; Velardi, Paola. - (1999). (Intervento presentato al convegno International Conference on Information Intelligence and Systems tenutosi a Bethesda, MD, USA).

A Statistical Technique for Bootstrapping Available Resources for Proper Nouns Classification

VELARDI, Paola
1999

Abstract

Describes an algorithm for improving the performance of unknown proper noun recognizers, using a statistical framework. We present a bootstrapping technique that starts out by using a training set to acquire contextual classification cues, and then uses the results of the initial phase to acquire additional training data from an unlabeled corpus. The training set (tagged proper nouns in contexts) is obtained trough an application of standard knowledge-based techniques for proper noun tagging, commonly used in information extraction systems.
1999
International Conference on Information Intelligence and Systems
bootstrapping techniques; corpus labelling
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Statistical Technique for Bootstrapping Available Resources for Proper Nouns Classification / A., Cucchiarelli; Velardi, Paola. - (1999). (Intervento presentato al convegno International Conference on Information Intelligence and Systems tenutosi a Bethesda, MD, USA).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/187244
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact