A deterministic algorithm was recently proposed for channel identification in block communication systems. The method assumed that the channel is finite impulse response (FIR) and that null guard intervals of length greater than the channel order are inserted between successive blocks to prevent interblock interference and allow block synchronization. In the absence of noise, the algorithm provides error-free channel estimates, using a finite number of received data, without requiring training sequences and without imposing a restriction neither on the channel, except for finite order and time invariance, nor on the symbol constellation. Using small perturbation analysis, in this paper, we derive approximate expressions of the estimated channel covariance matrix, which are used to quantify the resilience of the estimation algorithm to additive noise and channel fluctuations. Specifically, we consider channel fluctuations induced by transmitter/receiver relative motion, asynchronism, and oscillators' phase noise. We also compare the channel estimation accuracy with the Cramer-Rao bound (CRB) and prove that our estimation method is statistically efficient at practical SNR values for any data block length. Finally, we validate our theoretical analysis with simulations and compare our transmission scheme with an alternative system using training sequences for channel estimation.

Performance analysis of a deterministic channel estimator for block transmission systems with null guard intervals / Barbarossa, Sergio; A., Scaglione; G. B., Giannakis. - In: IEEE TRANSACTIONS ON SIGNAL PROCESSING. - ISSN 1053-587X. - 50:3(2002), pp. 684-695. [10.1109/78.984763]

Performance analysis of a deterministic channel estimator for block transmission systems with null guard intervals

BARBAROSSA, Sergio;
2002

Abstract

A deterministic algorithm was recently proposed for channel identification in block communication systems. The method assumed that the channel is finite impulse response (FIR) and that null guard intervals of length greater than the channel order are inserted between successive blocks to prevent interblock interference and allow block synchronization. In the absence of noise, the algorithm provides error-free channel estimates, using a finite number of received data, without requiring training sequences and without imposing a restriction neither on the channel, except for finite order and time invariance, nor on the symbol constellation. Using small perturbation analysis, in this paper, we derive approximate expressions of the estimated channel covariance matrix, which are used to quantify the resilience of the estimation algorithm to additive noise and channel fluctuations. Specifically, we consider channel fluctuations induced by transmitter/receiver relative motion, asynchronism, and oscillators' phase noise. We also compare the channel estimation accuracy with the Cramer-Rao bound (CRB) and prove that our estimation method is statistically efficient at practical SNR values for any data block length. Finally, we validate our theoretical analysis with simulations and compare our transmission scheme with an alternative system using training sequences for channel estimation.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/17639
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact