We introduce an extension of finite mixture models by incorporating skewnormal distributions within a Hidden Markov Model framework assisted by a Viterbi algorithm. By estimating state-specific parameters, including location, scale, and skewness, the model enables accurate modelling of asymmetric data and detection of regime transitions, providing an alternative solution in cases where Gaussian mixtures may prove computationally ine!cient or prone to overfitting.

Skew-normal finite mixture models for change-point detection in time series / Forti, Marco; Nigri, Andrea; Shang, Hanlin. - (2025), pp. 1280-1286. ( 2025 Conference of the 12th Scientific Meeting of the Statistics for the Evaluation and Quality of Services Group of the Italian Statistical Society (SVQS) Bressanone ).

Skew-normal finite mixture models for change-point detection in time series

Marco Forti
;
Andrea Nigri;
2025

Abstract

We introduce an extension of finite mixture models by incorporating skewnormal distributions within a Hidden Markov Model framework assisted by a Viterbi algorithm. By estimating state-specific parameters, including location, scale, and skewness, the model enables accurate modelling of asymmetric data and detection of regime transitions, providing an alternative solution in cases where Gaussian mixtures may prove computationally ine!cient or prone to overfitting.
2025
2025 Conference of the 12th Scientific Meeting of the Statistics for the Evaluation and Quality of Services Group of the Italian Statistical Society (SVQS)
change point detection; regime transitions; Viterbi-type algorithm; skew-normal distribution; finite mixture models; hidden markov model.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Skew-normal finite mixture models for change-point detection in time series / Forti, Marco; Nigri, Andrea; Shang, Hanlin. - (2025), pp. 1280-1286. ( 2025 Conference of the 12th Scientific Meeting of the Statistics for the Evaluation and Quality of Services Group of the Italian Statistical Society (SVQS) Bressanone ).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1757898
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact