Gravitational-wave astronomy has opened a new observational window onto the universe, with an invaluable scientific impact across a wide range of fields, including astrophysics, cosmology, nuclear physics, and fundamental physics. The LIGO-Virgo- KAGRA Collaboration operates four ground-based detectors worldwide, having jointly observed hundreds of binary mergers, primarily involving black holes, but also neutron stars. These events include the milestone observation GW170817, which marked the birth of multi-messenger astronomy. The experimental detection of gravitational waves is made possible by kilometer- long Michelson interferometers, where laser light is used to monitor the relative position of free-falling test mass mirrors. These instruments can sense mirror displacements on the order of 10^(−18) m or smaller, within the frequency band 10 Hz − 10 kHz. This extraordinary sensitivity makes the detectors ultimately limited by quantum fluctuations of the photons circulating in the interferometer, a phenomenon known as quantum noise. The quantum uncertainties in the energy and phase of these photons can be correlated to each other in a controlled way to reduce quantum noise in a portion of the sensitivity spectrum. The non-classical states of light that implement such correlations are defined as squeezed states, and they can be circulated through a linear detuned cavity, called filter cavity, to extend their beneficial effect on sensitivity across the entire detection bandwidth. This thesis explores experimental strategies for broadband quantum noise reduc- tion in current and future gravitational-wave detectors through the use of squeezed states of light. The first part of the work concerns the characterization of the efficiency in the squeezing system of the Advanced Virgo+ detector, that is, the version of the Virgo experiment in the present observing run, named O4. The analysis of the impact of squeezing on the measured quantum noise variance revealed an efficiency of approximately 40% in the high frequency band (f ≳ 300 Hz), which increases to a broadband 65% after subtracting classical (i.e., non-quantum) sources of squeezing degradation. This result is crucial for enhancing the astrophysical reach of Virgo with its squeezing system, and will guide future upgrades to the quantum noise reduction system. Looking beyond the state of the art, next-generation detectors such as the Einstein Telescope will feature kilometer-scale filter cavities. A promising squeezing strategy, alternative to the use of external cavities, is based on the Einstein-Podolsky-Rosen (EPR) quantum entanglement. An R&D table-top optical prototype, to probe this scheme in the frequency band of interest for gravitational-wave detectors, is under development. The duty cycle of the parts of the setup treated here amounts to 95%. In parallel, an analytical simulation code has been developed to assess the effect of the EPR strategy on the sensitivity of future detectors, and to compare it with present ones. The scientific goal of this dual approach is to guide the design choices of future squeezing systems, thereby contributing to the ongoing experimental efforts to maximize the potential of gravitational-wave astronomy.
L’astronomia delle onde gravitazionali ha aperto una nuova finestra osservativa sull’universo, con un impatto scientifico inestimabile in un’ampia gamma di campi, tra cui l’astrofisica, la cosmologia, la fisica nucleare e la fisica fondamentale. La Collaborazione LIGO-Virgo- KAGRA gestisce quattro rivelatori terrestri di onde gravitazionali in tutto il mondo, che insieme hanno osservato centinaia di coalescenze di sistemi binari compatti, i quali coinvolgono principalmente buchi neri, ma anche stelle di neutroni. Tra questi eventi rientra GW170817, l’osservazione storica che ha segnato la nascita dell’astronomia multimessaggera. La rivelazione sperimentale delle onde gravitazionali avviene con interferometri di Michelson di lunghezza chilometrica, in cui la luce di un laser è utilizzata per monitorare la posizione relativa degli specchi, che costituiscono delle masse di prova in caduta libera. Questi strumenti sono in grado di misurare spostamenti degli specchi dell’ordine di 10^(−18) m o inferiori, nella banda di frequenze 10 Hz − 10 kHz. Tale straordinaria sensibilità fa sì che i rivelatori siano limitati dalle fluttuazioni quantistiche dei fotoni che viaggiano nell’interferometro, un fenomeno noto come rumore quantistico. Le incertezze quantistiche in ampiezza e fase di questi fotoni possono essere correlate tra loro, in modo da ridurre il rumore quantistico in una porzione della banda di rivelazione. Gli stati non classici della luce che implementano queste correlazioni sono definiti stati squeezed ("compressi", in inglese), e possono essere iniettati in una cavità lineare "di filtro", detta filter cavity, non risonante alla frequenza degli stati squeezed. Questo processo estende il miglioramento della sensibilità all’intera banda di rivelazione. Questa tesi esplora strategie sperimentali per la riduzione a banda larga del rumore quantistico nei rivelatori di onde gravitazionali attuali e futuri mediante l’uso di stati di luce squeezed. La prima parte del lavoro riguarda la caratterizzazione dell’efficienza del sistema di squeezing del rivelatore Advanced Virgo+, ossia l’attuale versione dell’esperimento Virgo, durante il run osservativo O4. L’analisi dell’impatto dello squeezing sulla varianza del rumore quantistico misurato ha rivelato un’efficienza di circa 40% ad alte frequenze (f ≳ 300 Hz), che cresce fino al 65% su tutta la banda, dopo aver sottratto le sorgenti classiche (ossia non quantistiche) di degradazione dello squeezing. Questo risultato è fondamentale per aumentare l’orizzonte osservativo di Virgo grazie al suo sistema di squeezing, e farà da base per i futuri miglioramenti dell’apparato sperimentale di riduzione del rumore quantistico. Guardando al futuro, i rivelatori di prossima generazione, come l’Einstein Telescope, saranno dotati di filter cavity di scala chilometrica. Una promettente strategia di squeezing, alternativa all’uso di cavità esterne, è basata sull’entanglement quantistico di tipo Einstein- Podolsky-Rosen (EPR). Un prototipo su banco ottico, volto a esplorare questo schema nella banda di frequenze utile ai rivelatori di onde gravitazionali, è in fase di sviluppo. Il duty cycle delle parti dell’apparato trattate in questa tesi ammonta al 95%. In parallelo, è stato sviluppato un codice di simulazione analitica per valutare l’effetto EPR sulla sensibilità dei futuri rivelatori e confrontarla con quella degli esperimenti attuali. L’obiettivo scientifico di questo duplice approccio è supportare le scelte sul design dei futuri sistemi di squeezing, inserendosi in una serie di esperimenti R&D in corso con lo scopo di massimizzare l’enorme potenziale dell’astronomia delle onde gravitazionali.
Enhancing the astrophysical reach of present and future gravitational-wave detectors via quantum squeezing / De Marco, Francesco. - (2025 Dec 10).
Enhancing the astrophysical reach of present and future gravitational-wave detectors via quantum squeezing
DE MARCO, FRANCESCO
10/12/2025
Abstract
Gravitational-wave astronomy has opened a new observational window onto the universe, with an invaluable scientific impact across a wide range of fields, including astrophysics, cosmology, nuclear physics, and fundamental physics. The LIGO-Virgo- KAGRA Collaboration operates four ground-based detectors worldwide, having jointly observed hundreds of binary mergers, primarily involving black holes, but also neutron stars. These events include the milestone observation GW170817, which marked the birth of multi-messenger astronomy. The experimental detection of gravitational waves is made possible by kilometer- long Michelson interferometers, where laser light is used to monitor the relative position of free-falling test mass mirrors. These instruments can sense mirror displacements on the order of 10^(−18) m or smaller, within the frequency band 10 Hz − 10 kHz. This extraordinary sensitivity makes the detectors ultimately limited by quantum fluctuations of the photons circulating in the interferometer, a phenomenon known as quantum noise. The quantum uncertainties in the energy and phase of these photons can be correlated to each other in a controlled way to reduce quantum noise in a portion of the sensitivity spectrum. The non-classical states of light that implement such correlations are defined as squeezed states, and they can be circulated through a linear detuned cavity, called filter cavity, to extend their beneficial effect on sensitivity across the entire detection bandwidth. This thesis explores experimental strategies for broadband quantum noise reduc- tion in current and future gravitational-wave detectors through the use of squeezed states of light. The first part of the work concerns the characterization of the efficiency in the squeezing system of the Advanced Virgo+ detector, that is, the version of the Virgo experiment in the present observing run, named O4. The analysis of the impact of squeezing on the measured quantum noise variance revealed an efficiency of approximately 40% in the high frequency band (f ≳ 300 Hz), which increases to a broadband 65% after subtracting classical (i.e., non-quantum) sources of squeezing degradation. This result is crucial for enhancing the astrophysical reach of Virgo with its squeezing system, and will guide future upgrades to the quantum noise reduction system. Looking beyond the state of the art, next-generation detectors such as the Einstein Telescope will feature kilometer-scale filter cavities. A promising squeezing strategy, alternative to the use of external cavities, is based on the Einstein-Podolsky-Rosen (EPR) quantum entanglement. An R&D table-top optical prototype, to probe this scheme in the frequency band of interest for gravitational-wave detectors, is under development. The duty cycle of the parts of the setup treated here amounts to 95%. In parallel, an analytical simulation code has been developed to assess the effect of the EPR strategy on the sensitivity of future detectors, and to compare it with present ones. The scientific goal of this dual approach is to guide the design choices of future squeezing systems, thereby contributing to the ongoing experimental efforts to maximize the potential of gravitational-wave astronomy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


