This review explores the transformative role of CRISPR/Cas systems in optical bioimaging, emphasizing how advancements in nanoparticle (NP) technologies are revolutionizing the visualization of gene-editing processes both in vitro and in vivo. Optical imaging techniques, such as near-infrared (NIR) and fluorescence imaging, have greatly benefited from the integration of nanoformulated contrast agents, improving resolution, sensitivity, and specificity. CRISPR/Cas systems, originally developed just for gene editing, are now being coupled with these imaging modalities to enable real-time monitoring and quantitative measurements of metabolites, vitamins, proteins, nucleic acids and other entities in specific areas of the body, as well as tracking of CRISPR/Cas delivery, editing efficiency, and potential off-target effects. The development of CRISPR/Cas-loaded NPs allows for enhanced imaging and precise monitoring across multiple scales with multiplexed and multicolor imaging in complex settings, including potential in vivo diagnostics. CRISPR/Cas therapeutics as well as diagnostics are hindered by the lack of efficient and targeted delivery tools. Biomimetic NPs have emerged as promising tools for improving biocompatibility, enhancing targeting capabilities, and overcoming biological barriers, facilitating more efficient delivery and bioimaging of CRISPR/Cas systems in vivo. As the design of these NPs and delivery mechanisms improves, alongside advancements in endolysosomal escape, CRISPR/Cas-based bioimaging will continue to advance, offering unprecedented possibilities in precision medicine and theranostic applications.

CRISPR/Cas bioimaging: From whole body biodistribution to single-cell dynamics / Kolesova, Ekaterina; Pulone, Sabina; Kostyushev, Dmitry; Tasciotti, Ennio. - In: ADVANCED DRUG DELIVERY REVIEWS. - ISSN 0169-409X. - 224:(2025). [10.1016/j.addr.2025.115619]

CRISPR/Cas bioimaging: From whole body biodistribution to single-cell dynamics

Pulone, Sabina
Co-primo
Writing – Original Draft Preparation
;
2025

Abstract

This review explores the transformative role of CRISPR/Cas systems in optical bioimaging, emphasizing how advancements in nanoparticle (NP) technologies are revolutionizing the visualization of gene-editing processes both in vitro and in vivo. Optical imaging techniques, such as near-infrared (NIR) and fluorescence imaging, have greatly benefited from the integration of nanoformulated contrast agents, improving resolution, sensitivity, and specificity. CRISPR/Cas systems, originally developed just for gene editing, are now being coupled with these imaging modalities to enable real-time monitoring and quantitative measurements of metabolites, vitamins, proteins, nucleic acids and other entities in specific areas of the body, as well as tracking of CRISPR/Cas delivery, editing efficiency, and potential off-target effects. The development of CRISPR/Cas-loaded NPs allows for enhanced imaging and precise monitoring across multiple scales with multiplexed and multicolor imaging in complex settings, including potential in vivo diagnostics. CRISPR/Cas therapeutics as well as diagnostics are hindered by the lack of efficient and targeted delivery tools. Biomimetic NPs have emerged as promising tools for improving biocompatibility, enhancing targeting capabilities, and overcoming biological barriers, facilitating more efficient delivery and bioimaging of CRISPR/Cas systems in vivo. As the design of these NPs and delivery mechanisms improves, alongside advancements in endolysosomal escape, CRISPR/Cas-based bioimaging will continue to advance, offering unprecedented possibilities in precision medicine and theranostic applications.
2025
Bioimaging techniques; Bioinspired materials; CRISPR/Cas; Cellular trafficking; Diagnostic tools; Drug delivery; Hybrid systems; Molecular rehabilitation; Nanoparticles; Proteolipid vesicles; Rehabilitative medicine; Transport mechanisms
01 Pubblicazione su rivista::01a Articolo in rivista
CRISPR/Cas bioimaging: From whole body biodistribution to single-cell dynamics / Kolesova, Ekaterina; Pulone, Sabina; Kostyushev, Dmitry; Tasciotti, Ennio. - In: ADVANCED DRUG DELIVERY REVIEWS. - ISSN 0169-409X. - 224:(2025). [10.1016/j.addr.2025.115619]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1757269
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact