Biomarkers accurately informing prognostic assessment and therapeutic strategy are critical for improving patient outcome in oncology. Here, we apply a whole-genome, tumor-informed circulating tumor DNA (ctDNA) detection approach to address this challenge, leveraging 1,800 variants across 2,994 plasma samples from 431 patients with non-small cell lung cancer (NSCLC) from the TRACERx study. We show that ultrasensitive ctDNA detection below 80 parts per million both pre- and postoperatively is highly prognostic, and combinatorial analysis of the pre- and postoperative ctDNA status identifies an intermediate risk group, improving disease stratification. ctDNA kinetics demonstrate clinical utility during adjuvant therapy, where patients that “clear” ctDNA during adjuvant therapy experience improved outcomes. Moreover, characterization of patterns in postoperative ctDNA kinetics reveals insights into the timing, risk, and anatomical pattern of relapses. By incorporating longitudinal ultrasensitive ctDNA detection, we propose a refined schema for guiding the stratification and treatment recommendations in early stage NSCLC.

Longitudinal ultrasensitive ctDNA monitoring for high-resolution lung cancer risk prediction / Black, James R M; Karasaki, Takahiro; Abbott, Charles W; Li, Bailiang; Veeriah, Selvaraju; Al Bakir, Maise; Liu, Wing Kin; Huebner, Ariana; Martínez-Ruiz, Carlos; Pawlik, Piotr; Moore, David A; Marinelli, Daniele; Shutkever, Oliver; Murphy, Cian; Liu, Lydia Y; Grieco, Charlotte; Grimes, Karen; Navarro, Fabio C P; Pyke, Rachel Marty; Bartha, Gabor; Keough, Kathleen C; Dea, Steven; Ravi, Neeraja; Lyle, John; Harris, Jason; Brown, Katherine D; Blackhall, Fiona H; Hassani, Fatemah; Fennell, Dean A; Mcgranahan, Nicholas; Shaw, Jacqui A; Abbosh, Christopher; Hackshaw, Allan; Jamal-Hanjani, Mariam; Frankell, Alexander M; Boyle, Sean M; Chen, Richard O; Swanton, Charles. - In: CELL. - ISSN 1097-4172. - 188:25(2025), pp. 7083-7098.e18. [10.1016/j.cell.2025.10.020]

Longitudinal ultrasensitive ctDNA monitoring for high-resolution lung cancer risk prediction

Marinelli, Daniele;
2025

Abstract

Biomarkers accurately informing prognostic assessment and therapeutic strategy are critical for improving patient outcome in oncology. Here, we apply a whole-genome, tumor-informed circulating tumor DNA (ctDNA) detection approach to address this challenge, leveraging 1,800 variants across 2,994 plasma samples from 431 patients with non-small cell lung cancer (NSCLC) from the TRACERx study. We show that ultrasensitive ctDNA detection below 80 parts per million both pre- and postoperatively is highly prognostic, and combinatorial analysis of the pre- and postoperative ctDNA status identifies an intermediate risk group, improving disease stratification. ctDNA kinetics demonstrate clinical utility during adjuvant therapy, where patients that “clear” ctDNA during adjuvant therapy experience improved outcomes. Moreover, characterization of patterns in postoperative ctDNA kinetics reveals insights into the timing, risk, and anatomical pattern of relapses. By incorporating longitudinal ultrasensitive ctDNA detection, we propose a refined schema for guiding the stratification and treatment recommendations in early stage NSCLC.
2025
circulating tumor DNA; liquid biopsy; molecular residual disease; non-small cell lung cancer; prognostic classification; therapy response prediction/monitoring
01 Pubblicazione su rivista::01a Articolo in rivista
Longitudinal ultrasensitive ctDNA monitoring for high-resolution lung cancer risk prediction / Black, James R M; Karasaki, Takahiro; Abbott, Charles W; Li, Bailiang; Veeriah, Selvaraju; Al Bakir, Maise; Liu, Wing Kin; Huebner, Ariana; Martínez-Ruiz, Carlos; Pawlik, Piotr; Moore, David A; Marinelli, Daniele; Shutkever, Oliver; Murphy, Cian; Liu, Lydia Y; Grieco, Charlotte; Grimes, Karen; Navarro, Fabio C P; Pyke, Rachel Marty; Bartha, Gabor; Keough, Kathleen C; Dea, Steven; Ravi, Neeraja; Lyle, John; Harris, Jason; Brown, Katherine D; Blackhall, Fiona H; Hassani, Fatemah; Fennell, Dean A; Mcgranahan, Nicholas; Shaw, Jacqui A; Abbosh, Christopher; Hackshaw, Allan; Jamal-Hanjani, Mariam; Frankell, Alexander M; Boyle, Sean M; Chen, Richard O; Swanton, Charles. - In: CELL. - ISSN 1097-4172. - 188:25(2025), pp. 7083-7098.e18. [10.1016/j.cell.2025.10.020]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1757190
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact