The intrinsic complexity of the built environment is increasing, due to the intricate interplay of various factors related to environmental, social and economic objectives. Such complexity poses significant challenges in reaching the demanding performances required to buildings today but, at the same time, offers opportunities to innovate the building design process. This doctoral thesis explores the integration of building performance optimization (BPO) methodologies within different design stages, coupling parametric modeling, dynamic simulations and optimization algorithms. The study elaborates on how multi-objective BPO can address complexity in the design process of sustainable and low-energy buildings from the schematic design phase of a new construction up to the retrofit of an existing building. In so doing, it focuses on multi-family residential buildings, as they are a priority in energy efficiency measures at the national and international levels and play a key role in addressing current issues, such as climate change and fuel poverty. The research takes its moves from the concept of the built environment as a complex system, emphasizing the necessity of advanced digital tools to deal with such complexity. Indeed, design decision-making phases are characterized by numerous possible combinations of passive strategies which can improve building performance without using extra energy. Such design solutions influence the often conflicting objectives that a sustainable building aims to achieve, towards high conditions of comfort and functionality, without the consequence of excessive energy consumption and emissions. First, a systematic literature review, carried out in parallel with an online survey distributed to architectural firms, highlights, on the one hand, the great interest in BPO in current research and, on the other, the limited diffusion of both simulation and optimization tools in architectural practice. Once misalignments between research and professional practice have been analyzed, the thesis then proposes specific methodologies, rooted in the results of the review, for the use of multi-objective optimization both for new constructions and for existing buildings, demonstrating them by applications on relevant case studies. The optimization carried out during the schematic phase of the project (thus for the case of a new construction) takes into consideration the geometric variables of the building to minimize energy consumption and maximize daylight accessibility. The proposed methodology integrates multi-disciplinary simulations and optimization, in a parametric modeling environment. Results emphasize the critical role of design choices during the early stages, and thus, the necessity of a meticulous optimization of geometric variables. Moreover, in order to analyze the optimization during an advanced and highly detailed phase of the project, the case of a retrofit of an existing building is considered, and a methodology is proposed, testing an advanced algorithm, the active-archive Non-dominated Sorting Genetic Algorithm-II (aNSGA-II). Architecturally-compatible passive retrofit strategies on the building envelope are analyzed and the optimization process is carried out to find an energy- and cost- efficient solution. Furthermore, active strategies and renewable energy are also considered, reflecting on their role in the decarbonization of the building stock and in making inhabitants less subjected to energy price fluctuations. The thesis concludes by illustrating the answers to the research questions raised in the introduction, emphasizing multi-objective BPO's potential to address and inform design decisions from early phases, aligning with the current necessity of collaborative and multi-disciplinary design process. Therefore, the thesis demonstrates how BPO can be of support in different phases of a building design, showing the significant variables to be analyzed based on the level of detail of the design phase considered and proposing specific methodologies. The impact of the research here presented extends beyond academia, influencing professionals, software developers, and policymakers in promoting sustainable and low-energy buildings towards the mitigation of climate change and fuel poverty.

La crescente complessità intrinseca all’ambiente costruito, dovuta alla complessa interazione di vari fattori legati ad obiettivi ambientali, sociali ed economici, pone sfide significative nel raggiungimento delle esigenti prestazioni richieste oggi agli edifici ma, allo stesso tempo, fornisce opportunità per innovarne il processo progettuale. Questa tesi di dottorato esplora l’integrazione di metodologie di ottimizzazione multi-obiettivo della prestazione dell’edificio all’interno di diverse fasi progettuali, combinando modellazione parametrica, simulazione in regime dinamico e algoritmi di ottimizzazione. Lo studio approfondisce come tali metodologie possano affrontare la complessità del processo di progettazione di edifici sostenibili e a basso consumo energetico, dalla fase schematica del progetto di nuova costruzione fino al retrofit di un edificio esistente. A tal fine, si focalizza su edifici residenziali multifamiliari, in quanto rappresentano una priorità nelle politiche di efficientamento energetico a livello nazionale ed internazionale e svolgono un ruolo chiave nell’affrontare problematiche attuali, quali il cambiamento climatico e la povertà energetica. La ricerca prende le mosse dal concetto di ambiente costruito come sistema complesso, enfatizzando la necessità di strumenti digitali avanzati a supporto di tale complessità. Le fasi decisionali del progetto, infatti, sono caratterizzate da numerose possibili combinazioni di strategie passive, le quali permettono di migliorare la prestazione dell’edificio senza l’utilizzo di energia supplementare. Tali soluzioni progettuali influenzano gli obiettivi spesso contrastanti che un edificio sostenibile si propone di raggiungere, verso elevate condizioni di comfort e funzionalità, senza la conseguenza di eccessivi consumi energetici ed emissioni. In primo luogo, una revisione sistematica della letteratura scientifica, condotta parallelamente ad un questionario online distribuito a studi di architettura, evidenzia da un lato l’attualità del tema nella ricerca, dall’altro la scarsa diffusione di strumenti sia di simulazione che di ottimizzazione nella pratica architettonica. Analizzati i disallineamenti tra ricerca e pratica professionale, la tesi propone quindi specifiche metodologie, consolidate sui risultati della suddetta revisione, per l’utilizzo dell’ottimizzazione multi-obiettivo sia per nuove costruzioni che per edifici esistenti, dimostrandole attraverso applicazioni su casi studio rilevanti. L’ottimizzazione svolta durante la fase schematica del progetto (e quindi per il caso di nuova costruzione), prende in considerazione le variabili geometriche dell’edificio per minimizzare i consumi energetici e massimizzare l’ingresso di luce naturale al suo interno. La metodologia proposta integra in ambiente di modellazione parametrico, simulazioni multidisciplinari e ottimizzazione. I risultati enfatizzano il ruolo critico delle scelte progettuali durante le fasi iniziali del progetto e quindi la necessità di una attenta ottimizzazione delle variabili geometriche. Inoltre, al fine di analizzare l’ottimizzazione durante una fase del progetto avanzata e più dettagliata, viene considerato il caso di un retrofit di un edificio esistente e viene proposta una metodologia, testando un avanzato algoritmo, l’active-archive Non-dominated Sorting Genetic Algorithm-II (aNSGA-II). Sono identificate strategie passive di retrofit sull’involucro edilizio, compatibili da un punto di vista architettonico, e viene eseguito il processo di ottimizzazione per trovare una soluzione efficiente sia dal punto di vista energetico che economico. Inoltre, sono prese in considerazione anche strategie attive e energie rinnovabili, riflettendo sul loro ruolo nella decarbonizzazione del patrimonio edilizio e nel rendere gli abitanti meno soggetti a fluttuazioni di prezzi dell’energia. La tesi conclude illustrando le risposte alle domande di ricerca sollevate nell'introduzione, sottolineando il potenziale dell’ottimizzazione multi-obiettivo della prestazione dell’edificio nell’indirizzare ed informare le scelte del progettista fin dalle prime fasi, allineandosi con la necessità di un processo di progettazione collaborativo e multidisciplinare. La tesi dimostra quindi come strumenti di simulazione connessi a algoritmi di ottimizzazione possano essere di supporto nelle diverse fasi della progettazione di un edificio, mostrando le variabili significative da analizzare in base al livello di dettaglio della fase progettuale considerata e proponendo metodologie specifiche. L’impatto della ricerca qui presentata si estende oltre il mondo accademico, influenzando professionisti, sviluppatori di software e policy-makers nella promozione di edifici sostenibili e a basso consumo energetico verso la mitigazione del cambiamento climatico e della povertà energetica.

Multi-objective optimization for sustainable building design. From schematic design phases to retrofit strategies optimization using genetic algorithms / Ciardiello, Adriana. - (2024 Jun).

Multi-objective optimization for sustainable building design. From schematic design phases to retrofit strategies optimization using genetic algorithms

CIARDIELLO, ADRIANA
01/06/2024

Abstract

The intrinsic complexity of the built environment is increasing, due to the intricate interplay of various factors related to environmental, social and economic objectives. Such complexity poses significant challenges in reaching the demanding performances required to buildings today but, at the same time, offers opportunities to innovate the building design process. This doctoral thesis explores the integration of building performance optimization (BPO) methodologies within different design stages, coupling parametric modeling, dynamic simulations and optimization algorithms. The study elaborates on how multi-objective BPO can address complexity in the design process of sustainable and low-energy buildings from the schematic design phase of a new construction up to the retrofit of an existing building. In so doing, it focuses on multi-family residential buildings, as they are a priority in energy efficiency measures at the national and international levels and play a key role in addressing current issues, such as climate change and fuel poverty. The research takes its moves from the concept of the built environment as a complex system, emphasizing the necessity of advanced digital tools to deal with such complexity. Indeed, design decision-making phases are characterized by numerous possible combinations of passive strategies which can improve building performance without using extra energy. Such design solutions influence the often conflicting objectives that a sustainable building aims to achieve, towards high conditions of comfort and functionality, without the consequence of excessive energy consumption and emissions. First, a systematic literature review, carried out in parallel with an online survey distributed to architectural firms, highlights, on the one hand, the great interest in BPO in current research and, on the other, the limited diffusion of both simulation and optimization tools in architectural practice. Once misalignments between research and professional practice have been analyzed, the thesis then proposes specific methodologies, rooted in the results of the review, for the use of multi-objective optimization both for new constructions and for existing buildings, demonstrating them by applications on relevant case studies. The optimization carried out during the schematic phase of the project (thus for the case of a new construction) takes into consideration the geometric variables of the building to minimize energy consumption and maximize daylight accessibility. The proposed methodology integrates multi-disciplinary simulations and optimization, in a parametric modeling environment. Results emphasize the critical role of design choices during the early stages, and thus, the necessity of a meticulous optimization of geometric variables. Moreover, in order to analyze the optimization during an advanced and highly detailed phase of the project, the case of a retrofit of an existing building is considered, and a methodology is proposed, testing an advanced algorithm, the active-archive Non-dominated Sorting Genetic Algorithm-II (aNSGA-II). Architecturally-compatible passive retrofit strategies on the building envelope are analyzed and the optimization process is carried out to find an energy- and cost- efficient solution. Furthermore, active strategies and renewable energy are also considered, reflecting on their role in the decarbonization of the building stock and in making inhabitants less subjected to energy price fluctuations. The thesis concludes by illustrating the answers to the research questions raised in the introduction, emphasizing multi-objective BPO's potential to address and inform design decisions from early phases, aligning with the current necessity of collaborative and multi-disciplinary design process. Therefore, the thesis demonstrates how BPO can be of support in different phases of a building design, showing the significant variables to be analyzed based on the level of detail of the design phase considered and proposing specific methodologies. The impact of the research here presented extends beyond academia, influencing professionals, software developers, and policymakers in promoting sustainable and low-energy buildings towards the mitigation of climate change and fuel poverty.
giu-2024
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1756920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact