Post-tensioned (PT) timber technology, also referred to as Pres-Lam (prestressed laminated timber) provides a low damage seismic design solution. So far PT timber research and practical implementation have focused on moment resisting frames, planar shear walls and coupled planar shear wall-or column-wall-column-systems and their analytical prediction models were adapted and extended from precast concrete to account for the unique characteristics of engineered timber. Following a recent experimental study on a PT cross-laminated timber (CLT) C-shaped core-wall system aiming to enhance lateral strength and stiffness, this paper presents an analytical framework/model to capture three unique kinematic rocking mechanisms for a PT C-shaped CLT core-wall system connected primarily with self-tapping screws. Depending on the relative stiffness of the screwed connections to the PT and the energy dissipaters, the model considers different kinematic responses, and that a staged kinematic response could occur at different imposed core-wall base connection rotations. It also accounts for the material inhomogeneity of CLT with nonedge glued lamella and implements a nonlinear spring model for the screwed connections calibrated from component testing and expected elastic core-wall deformations. The study showed that, for the given specimen configurations presented, the compressive flange wall could be neglected for a PT C-shaped CLT core wall. The analytical model was verified against three large-scale 8.6 m high PT C-shaped core-wall experimental tests and the model prediction error was within 10%. The analytical model was limited to capturing the envelope (push-over) curve of a four wall PT C-shaped CLT core-wall system.

Analytical Modeling of Posttensioned C-Shaped CLT Core Walls / Brown, J. R.; Li, M.; Palermo, A.; Pampanin, S.; Sarti, F.. - In: JOURNAL OF STRUCTURAL ENGINEERING. - ISSN 0733-9445. - 149:3(2023). [10.1061/JSENDH.STENG-11455]

Analytical Modeling of Posttensioned C-Shaped CLT Core Walls

Pampanin S.;Sarti F.
2023

Abstract

Post-tensioned (PT) timber technology, also referred to as Pres-Lam (prestressed laminated timber) provides a low damage seismic design solution. So far PT timber research and practical implementation have focused on moment resisting frames, planar shear walls and coupled planar shear wall-or column-wall-column-systems and their analytical prediction models were adapted and extended from precast concrete to account for the unique characteristics of engineered timber. Following a recent experimental study on a PT cross-laminated timber (CLT) C-shaped core-wall system aiming to enhance lateral strength and stiffness, this paper presents an analytical framework/model to capture three unique kinematic rocking mechanisms for a PT C-shaped CLT core-wall system connected primarily with self-tapping screws. Depending on the relative stiffness of the screwed connections to the PT and the energy dissipaters, the model considers different kinematic responses, and that a staged kinematic response could occur at different imposed core-wall base connection rotations. It also accounts for the material inhomogeneity of CLT with nonedge glued lamella and implements a nonlinear spring model for the screwed connections calibrated from component testing and expected elastic core-wall deformations. The study showed that, for the given specimen configurations presented, the compressive flange wall could be neglected for a PT C-shaped CLT core wall. The analytical model was verified against three large-scale 8.6 m high PT C-shaped core-wall experimental tests and the model prediction error was within 10%. The analytical model was limited to capturing the envelope (push-over) curve of a four wall PT C-shaped CLT core-wall system.
2023
Cross-laminated timber (CLT); Shear walls; Post-tensioning; Rocking analytical modelling; Self-tapping screws; C-shape flanged wall; Re-centering systems; Particle tracking technology
01 Pubblicazione su rivista::01a Articolo in rivista
Analytical Modeling of Posttensioned C-Shaped CLT Core Walls / Brown, J. R.; Li, M.; Palermo, A.; Pampanin, S.; Sarti, F.. - In: JOURNAL OF STRUCTURAL ENGINEERING. - ISSN 0733-9445. - 149:3(2023). [10.1061/JSENDH.STENG-11455]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1756914
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact