In this paper, we study a new generalization of the kinetic equation emerging in run-and-tumble models [see, e.g., Angelani et al., J. Stat. Phys. 191, 129 (2024) for a time-fractional version of the kinetic equation]. We show that this generalization leads to a wide class of generalized fractional kinetic (GFK) and telegraph-type equations that depend on two (or three) parameters. We provide an explicit expression of the solution in the Laplace domain and show that, for a particular choice of the parameters, the fundamental solution of the GFK equation can be interpreted as the probability density function of a stochastic process obtained by a suitable transformation of the inverse of a subordinator. Then, we discuss some particularly interesting cases, such as generalized telegraph models, fractional diffusion equations involving higher order time derivatives, and fractional integral equations.

Generalized time-fractional kinetic-type equations with multiple parameters / Angelani, L.; De Gregorio, A.; Garra, R.. - In: CHAOS. - ISSN 1089-7682. - 35:2(2025). [10.1063/5.0243533]

Generalized time-fractional kinetic-type equations with multiple parameters

Angelani L.;Garra R.
2025

Abstract

In this paper, we study a new generalization of the kinetic equation emerging in run-and-tumble models [see, e.g., Angelani et al., J. Stat. Phys. 191, 129 (2024) for a time-fractional version of the kinetic equation]. We show that this generalization leads to a wide class of generalized fractional kinetic (GFK) and telegraph-type equations that depend on two (or three) parameters. We provide an explicit expression of the solution in the Laplace domain and show that, for a particular choice of the parameters, the fundamental solution of the GFK equation can be interpreted as the probability density function of a stochastic process obtained by a suitable transformation of the inverse of a subordinator. Then, we discuss some particularly interesting cases, such as generalized telegraph models, fractional diffusion equations involving higher order time derivatives, and fractional integral equations.
2025
Anomalous diffusion · Caputo fractional derivative · Inverse stable subordinator · Run-and-tumble walk · Telegraph process · Time-changed process
01 Pubblicazione su rivista::01a Articolo in rivista
Generalized time-fractional kinetic-type equations with multiple parameters / Angelani, L.; De Gregorio, A.; Garra, R.. - In: CHAOS. - ISSN 1089-7682. - 35:2(2025). [10.1063/5.0243533]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1756571
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact