We consider inverse problems in an irregular domain $\Omega$ and their suitable approximations, respectively. Under suitable assumptions, after stating well-posedness results, we prove that the solutions of the approximating problems converge to the solution of the problem on $\Omega$ via Mosco convergence. We also present some applications.

Inverse problems in irregular domains: approximation via Mosco convergence / Creo, Simone; Lancia, Maria; Mola, Gianluca; Romanelli, Silvia. - 828:(2025), pp. 41-60. ( 2nd Joint Congress of Mathematics AMS-EMS-SMF 2022 Grenoble; France ) [10.1090/conm/828/16593].

Inverse problems in irregular domains: approximation via Mosco convergence

Creo, Simone;Lancia, Maria
;
Mola, Gianluca;Romanelli, Silvia
2025

Abstract

We consider inverse problems in an irregular domain $\Omega$ and their suitable approximations, respectively. Under suitable assumptions, after stating well-posedness results, we prove that the solutions of the approximating problems converge to the solution of the problem on $\Omega$ via Mosco convergence. We also present some applications.
2025
2nd Joint Congress of Mathematics AMS-EMS-SMF 2022
Inverse problems; Mosco convergence; fractals; semigroups
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Inverse problems in irregular domains: approximation via Mosco convergence / Creo, Simone; Lancia, Maria; Mola, Gianluca; Romanelli, Silvia. - 828:(2025), pp. 41-60. ( 2nd Joint Congress of Mathematics AMS-EMS-SMF 2022 Grenoble; France ) [10.1090/conm/828/16593].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1756425
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact