A lunar landing pad (LLP) represents essential initial infrastructure for establishing sustainable lunar settlements. This study investigates the feasibility of constructing LLPs through in situ resource utilization (ISRU), focusing on an innovative composite material comprising lunar regolith and the high-performance thermoplastic Polyether Ether Ketone (PEEK). The proposed manufacturing approach involves mechanically blending regolith with PEEK granules, compacting the mixture in a mold, and thermally processing it to induce polymer melting and binding. Experimental analysis indicates that a modest binder fraction (15 wt. % PEEK) yields a robust composite with a flexural strength of 14.6 MPa, although exhibiting inherently brittle characteristics. Compaction pressure emerges as a crucial factor influencing material performance. Utilizing these findings, hexagonal modular tiles were designed as the fundamental LLP elements, specifically engineered to optimize manufacturing simplicity, mechanical robustness, stackability for redundancy, and ease of replacement or repair. The tile geometry strategically mitigates brittleness-induced vulnerabilities by avoiding stress concentrations. Explicit finite element analyses validated tile performance under simulated lunar landing conditions corresponding to the European Large Logistic Lander specifications. Results demonstrated safe landing velocities between 0.1 and 0.7 m/s, governed by the binder content and compaction pressure. A clearly identified linear correlation between the binder fraction and permissible impact velocity enables predictive tailoring of the material composition, confirming the suitability and scalability of thermoplastic–regolith composites for future lunar infrastructure development.
A Lunar Landing Pad from ISRU Materials: Design and Validation of a Structural Element / Pastore, A.; Agozzino, M.; Ferro, C. G.. - In: AEROSPACE. - ISSN 2226-4310. - 12:9(2025). [10.3390/aerospace12090781]
A Lunar Landing Pad from ISRU Materials: Design and Validation of a Structural Element
A. PastorePrimo
;
2025
Abstract
A lunar landing pad (LLP) represents essential initial infrastructure for establishing sustainable lunar settlements. This study investigates the feasibility of constructing LLPs through in situ resource utilization (ISRU), focusing on an innovative composite material comprising lunar regolith and the high-performance thermoplastic Polyether Ether Ketone (PEEK). The proposed manufacturing approach involves mechanically blending regolith with PEEK granules, compacting the mixture in a mold, and thermally processing it to induce polymer melting and binding. Experimental analysis indicates that a modest binder fraction (15 wt. % PEEK) yields a robust composite with a flexural strength of 14.6 MPa, although exhibiting inherently brittle characteristics. Compaction pressure emerges as a crucial factor influencing material performance. Utilizing these findings, hexagonal modular tiles were designed as the fundamental LLP elements, specifically engineered to optimize manufacturing simplicity, mechanical robustness, stackability for redundancy, and ease of replacement or repair. The tile geometry strategically mitigates brittleness-induced vulnerabilities by avoiding stress concentrations. Explicit finite element analyses validated tile performance under simulated lunar landing conditions corresponding to the European Large Logistic Lander specifications. Results demonstrated safe landing velocities between 0.1 and 0.7 m/s, governed by the binder content and compaction pressure. A clearly identified linear correlation between the binder fraction and permissible impact velocity enables predictive tailoring of the material composition, confirming the suitability and scalability of thermoplastic–regolith composites for future lunar infrastructure development.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


