We consider the problem of learning heuristics for numeric planning domains, using Graph Neural Networks. The problem has been approached multiple times, from different perspectives and with varying results for classical planning, but is relatively new for numeric planning. The goal is to extend the work proposed by St ̇𝑎lberg, Bonet, and Geffner [1] to handle numeric planning problems.

Learning Heuristics with Graph Neural Networks for Numeric Planning: A Preliminary Study / Borelli, Valerio; Gerevini, Alfonso Emilio; Scala, Enrico; Serina, Ivan. - 3914:(2024). ( 2024 Conference of the Italian Association for Artificial Intelligence (AIxIA) Doctoral Consortium, AIxIA-DC 2024 Bolzano, Italia ).

Learning Heuristics with Graph Neural Networks for Numeric Planning: A Preliminary Study

Borelli, Valerio
Primo
;
Gerevini, Alfonso Emilio;Scala, Enrico;Serina, Ivan
2024

Abstract

We consider the problem of learning heuristics for numeric planning domains, using Graph Neural Networks. The problem has been approached multiple times, from different perspectives and with varying results for classical planning, but is relatively new for numeric planning. The goal is to extend the work proposed by St ̇𝑎lberg, Bonet, and Geffner [1] to handle numeric planning problems.
2024
2024 Conference of the Italian Association for Artificial Intelligence (AIxIA) Doctoral Consortium, AIxIA-DC 2024
Numeric Planning; Graph Neural Networks; Heuristic Search
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Learning Heuristics with Graph Neural Networks for Numeric Planning: A Preliminary Study / Borelli, Valerio; Gerevini, Alfonso Emilio; Scala, Enrico; Serina, Ivan. - 3914:(2024). ( 2024 Conference of the Italian Association for Artificial Intelligence (AIxIA) Doctoral Consortium, AIxIA-DC 2024 Bolzano, Italia ).
File allegati a questo prodotto
File Dimensione Formato  
Borelli_Learning-Heuristics_2024.pdf

accesso aperto

Note: https://ceur-ws.org/Vol-3914/short76.pdf
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 275.29 kB
Formato Adobe PDF
275.29 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1755680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact