Goal Recognition (GR) consists of recognising the goal of an agent from partial observations. The state of the art on particular planning domains is represented by GRNet, a model based on Recurrent Neural Networks that solves GR as a classification task. Compared to automated planning, the need for large training sets is the main disadvantage of these approaches. Therefore, we formalise a loss regularisation technique to reduce the number of training samples needed, to reduce the convergence time, and to increase the performance in GR instances with a small percentage of observations. We empirically evaluate its effectiveness through extensive experiments.

Regularised Loss Function for Goal Recognition as a Deep Learning Task / Olivato, Matteo; Chiari, Mattia; Serina, Lorenzo; Borelli, Valerio; Tummolo, Massimiliano; Serina, Ivan; Rossetti, Nicholas; Gerevini, Alfonso Emilio. - (2025), pp. 570-581. (Intervento presentato al convegno 34th International Conference on Artificial Neural Networks tenutosi a Kaunas, Lithuania).

Regularised Loss Function for Goal Recognition as a Deep Learning Task

Borelli, Valerio;Tummolo, Massimiliano;Serina, Ivan;Rossetti, Nicholas;Gerevini, Alfonso Emilio
2025

Abstract

Goal Recognition (GR) consists of recognising the goal of an agent from partial observations. The state of the art on particular planning domains is represented by GRNet, a model based on Recurrent Neural Networks that solves GR as a classification task. Compared to automated planning, the need for large training sets is the main disadvantage of these approaches. Therefore, we formalise a loss regularisation technique to reduce the number of training samples needed, to reduce the convergence time, and to increase the performance in GR instances with a small percentage of observations. We empirically evaluate its effectiveness through extensive experiments.
2025
34th International Conference on Artificial Neural Networks
goal recognition; recurrent neural networks; loss regularisation
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Regularised Loss Function for Goal Recognition as a Deep Learning Task / Olivato, Matteo; Chiari, Mattia; Serina, Lorenzo; Borelli, Valerio; Tummolo, Massimiliano; Serina, Ivan; Rossetti, Nicholas; Gerevini, Alfonso Emilio. - (2025), pp. 570-581. (Intervento presentato al convegno 34th International Conference on Artificial Neural Networks tenutosi a Kaunas, Lithuania).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1755677
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact