In this work, we present a Bayesian Optimization (BO) approach for tuning the parameters of the Quantum Approximate Optimization Algorithm (QAOA) applied to max-cut problems. Within our black-box optimization framework, BO achieves competitive solutions while requiring significantly fewer quantum circuit evaluations compared to standard non-Bayesian global optimizers. These results highlight the potential of BO to enhance both the efficiency and the overall performance of variational quantum algorithms.

Sample-Efficient Tuning of Quantum Circuit Parameters via Bayesian Optimization / Pannone, Alessandro; Tosone, Federico; Faccini, Daniel; Romito, Francesco; Mazzi, Nicolò. - (2025). (Intervento presentato al convegno ODS2025 – International Conference on Optimization and Decision Science tenutosi a Milan; Italy).

Sample-Efficient Tuning of Quantum Circuit Parameters via Bayesian Optimization

Alessandro Pannone;Francesco Romito;
2025

Abstract

In this work, we present a Bayesian Optimization (BO) approach for tuning the parameters of the Quantum Approximate Optimization Algorithm (QAOA) applied to max-cut problems. Within our black-box optimization framework, BO achieves competitive solutions while requiring significantly fewer quantum circuit evaluations compared to standard non-Bayesian global optimizers. These results highlight the potential of BO to enhance both the efficiency and the overall performance of variational quantum algorithms.
2025
ODS2025 – International Conference on Optimization and Decision Science
04 Pubblicazione in atti di convegno::04d Abstract in atti di convegno
Sample-Efficient Tuning of Quantum Circuit Parameters via Bayesian Optimization / Pannone, Alessandro; Tosone, Federico; Faccini, Daniel; Romito, Francesco; Mazzi, Nicolò. - (2025). (Intervento presentato al convegno ODS2025 – International Conference on Optimization and Decision Science tenutosi a Milan; Italy).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1755655
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact