One can estimate the change of the Perron and Fiedler values for a connected network when the weight of an edge is perturbed by analyzing relevant entries of the Perron and Fiedler vectors. This is helpful for identifying edges whose weight perturbation causes the largest change in the Perron and Fiedler values. It is also important to investigate the sensitivity of the Perron and Fiedler vectors to perturbations. Applications of the perturbation analysis include the identification of edges that are critical for the structural robustness of the network.

Sensitivity of Perron and Fiedler Eigenpairs to Structural Perturbations of a Network / Noschese, Silvia; Reichel, Lothar. - In: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS. - ISSN 1070-5325. - 32:5(2025). [10.1002/nla.70041]

Sensitivity of Perron and Fiedler Eigenpairs to Structural Perturbations of a Network

Noschese, Silvia
;
2025

Abstract

One can estimate the change of the Perron and Fiedler values for a connected network when the weight of an edge is perturbed by analyzing relevant entries of the Perron and Fiedler vectors. This is helpful for identifying edges whose weight perturbation causes the largest change in the Perron and Fiedler values. It is also important to investigate the sensitivity of the Perron and Fiedler vectors to perturbations. Applications of the perturbation analysis include the identification of edges that are critical for the structural robustness of the network.
2025
eigenvalue sensitivity; eigenvector sensitivity; Fiedler value; Fiedler vector; network analysis; network robustness; Perron value; Perron vector
01 Pubblicazione su rivista::01a Articolo in rivista
Sensitivity of Perron and Fiedler Eigenpairs to Structural Perturbations of a Network / Noschese, Silvia; Reichel, Lothar. - In: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS. - ISSN 1070-5325. - 32:5(2025). [10.1002/nla.70041]
File allegati a questo prodotto
File Dimensione Formato  
Noschese_Sensitivity-of-Perron_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1754842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact