Clustering categorical data presents unique challenges that traditional techniques do not adequately address. This paper proposes an extension of the fuzzy C-modes algorithm. By incorporating a noise cluster and integrating spatial contiguity relationships among units, the algorithm’s robustness is significantly enhanced. Performance evaluations using synthetic data demonstrate the efficacy of the proposed algorithm in handling both global and local outliers. Furthermore, the paper discusses the application of the algorithm to real-world data on sustainable urban mobility in the Italian provincial capitals during 2021, highlighting its practical relevance and potential impact in real-world scenarios.

Fuzzy C‑modes clustering with spatial regularization and noise cluster / D’Urso, Pierpaolo; De Giovanni, Livia; Federico, Lorenzo; Vitale, Vincenzina. - In: ASTA ADVANCES IN STATISTICAL ANALYSIS. - ISSN 1863-8171. - (2025). [10.1007/s10182-025-00547-0]

Fuzzy C‑modes clustering with spatial regularization and noise cluster

Pierpaolo D’Urso;Vincenzina Vitale
2025

Abstract

Clustering categorical data presents unique challenges that traditional techniques do not adequately address. This paper proposes an extension of the fuzzy C-modes algorithm. By incorporating a noise cluster and integrating spatial contiguity relationships among units, the algorithm’s robustness is significantly enhanced. Performance evaluations using synthetic data demonstrate the efficacy of the proposed algorithm in handling both global and local outliers. Furthermore, the paper discusses the application of the algorithm to real-world data on sustainable urban mobility in the Italian provincial capitals during 2021, highlighting its practical relevance and potential impact in real-world scenarios.
2025
Fuzzy C-modes · Spatial contiguity · Noise cluster · Sustainability
01 Pubblicazione su rivista::01a Articolo in rivista
Fuzzy C‑modes clustering with spatial regularization and noise cluster / D’Urso, Pierpaolo; De Giovanni, Livia; Federico, Lorenzo; Vitale, Vincenzina. - In: ASTA ADVANCES IN STATISTICAL ANALYSIS. - ISSN 1863-8171. - (2025). [10.1007/s10182-025-00547-0]
File allegati a questo prodotto
File Dimensione Formato  
10182_2025_547_Author (2).pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 60.62 MB
Formato Adobe PDF
60.62 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1754815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact