We study a point scalar charge in circular orbit around a topological star, a regular, horizonless soliton emerging from dimensional compactification of Einstein-Maxwell theory in five dimensions, which could describe qualitative properties of microstate geometries for astrophysical black holes. This is the first step toward studying extreme mass-ratio inspirals around these objects. We show that when the particle probes the spacetime close to the object, the scalar-wave flux deviates significantly from the corresponding black hole case. Furthermore, as the topological star approaches the black-hole limit, the inspiral can resonantly excite its long-lived modes, resulting in sharp features in the emitted flux. Although such resonances are too narrow to produce detectable dephasing, we estimate that a year-long inspiral down to the innermost stable circular orbit could accumulate a significant dephasing for most configurations relative to the black hole case. While a full parameter-estimation analysis is needed, the generically large deviations are likely to be within the sensitivity reach of future space-based gravitational-wave detectors.
Extreme mass ratio inspirals around topological stars / Melis, Marco; Brito, Richard; Pani, Paolo. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 111:12(2025). [10.1103/zng8-9qrn]
Extreme mass ratio inspirals around topological stars
Marco Melis
;Richard Brito
;Paolo Pani
2025
Abstract
We study a point scalar charge in circular orbit around a topological star, a regular, horizonless soliton emerging from dimensional compactification of Einstein-Maxwell theory in five dimensions, which could describe qualitative properties of microstate geometries for astrophysical black holes. This is the first step toward studying extreme mass-ratio inspirals around these objects. We show that when the particle probes the spacetime close to the object, the scalar-wave flux deviates significantly from the corresponding black hole case. Furthermore, as the topological star approaches the black-hole limit, the inspiral can resonantly excite its long-lived modes, resulting in sharp features in the emitted flux. Although such resonances are too narrow to produce detectable dephasing, we estimate that a year-long inspiral down to the innermost stable circular orbit could accumulate a significant dephasing for most configurations relative to the black hole case. While a full parameter-estimation analysis is needed, the generically large deviations are likely to be within the sensitivity reach of future space-based gravitational-wave detectors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


