We present a new approach that demonstrates the deflection and guiding of relativistic electron beams over curved paths by means of the magnetic field generated in a plasma-discharge capillary. The active bending plasma (ABP) represents a promising solution that has been recently demonstrated with a proof of principle experiment. An ABP device consists of a curved capillary where large discharges (of the order of kA) are propagated in a plasma channel. Unlike conventional bending magnets, in which the field is constant over the bending plane, in the ABP, the azimuthal magnetic field generated by the discharge grows with the distance from the capillary axis. This features makes the device less affected by the beam chromatic dispersion so that it can be used to efficiently guide particle beams with non-negligible energy spreads. The study we present in the following aims to provide a theoretical basis of the main ABP features by presenting an analytical description of a single-particle motion and rms beam dynamics. The retrieved relationships are verified by means of numerical simulations and provide the theoretical matrix formalism needed to completely characterize such a new transport device.

Theory of particle beams transport over curved plasma-discharge capillaries / Frazzitta, A.; Pompili, R.; Rossi, A. R.. - In: PHYSICAL REVIEW. ACCELERATORS AND BEAMS. - ISSN 2469-9888. - 27:9(2024). [10.1103/PhysRevAccelBeams.27.091301]

Theory of particle beams transport over curved plasma-discharge capillaries

Frazzitta A.
;
Pompili R.;
2024

Abstract

We present a new approach that demonstrates the deflection and guiding of relativistic electron beams over curved paths by means of the magnetic field generated in a plasma-discharge capillary. The active bending plasma (ABP) represents a promising solution that has been recently demonstrated with a proof of principle experiment. An ABP device consists of a curved capillary where large discharges (of the order of kA) are propagated in a plasma channel. Unlike conventional bending magnets, in which the field is constant over the bending plane, in the ABP, the azimuthal magnetic field generated by the discharge grows with the distance from the capillary axis. This features makes the device less affected by the beam chromatic dispersion so that it can be used to efficiently guide particle beams with non-negligible energy spreads. The study we present in the following aims to provide a theoretical basis of the main ABP features by presenting an analytical description of a single-particle motion and rms beam dynamics. The retrieved relationships are verified by means of numerical simulations and provide the theoretical matrix formalism needed to completely characterize such a new transport device.
2024
plasma-based devices; beam manipulation; plasma discharge capillary;
01 Pubblicazione su rivista::01a Articolo in rivista
Theory of particle beams transport over curved plasma-discharge capillaries / Frazzitta, A.; Pompili, R.; Rossi, A. R.. - In: PHYSICAL REVIEW. ACCELERATORS AND BEAMS. - ISSN 2469-9888. - 27:9(2024). [10.1103/PhysRevAccelBeams.27.091301]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1753891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact