This work introduces a safe data-driven control methodology, Data-Enabled Predictive Control (DeePC), for the control of blood glucose in type-1 diabetic patients. DeePC utilizes input-output trajectory data directly without requiring a system model or state estimation like other modelbased algorithms. The control strategy is validated using the Bergman Minimal Model, a well-established framework for glucose-insulin dynamics. Comparative simulations are conducted against Proportional-Integral-Derivative (PID) and Model Predictive Control (MPC) strategies. Results show that DeePC achieves comparable or superior glycemic regulation, particularly under model uncertainty, by maintaining normoglycemia and reducing hypoglycemia risk. The findings demonstrate the robustness and potential of DeePC in biomedical applications where model accuracy is uncertain. Future works would include computational efficiency improvements and handling uncertainties in meal estimation.

Safe Data-Driven Optimal control for type-1 Diabetes / Atanasious, Mohab M. H.; Becchetti, Valentina; Giuseppi, Alessandro. - (2025). (Intervento presentato al convegno 2025 11th International Conference on Control, Decision and Information Tech- nologies (CoDIT). IEEE, 2025. tenutosi a Spalato).

Safe Data-Driven Optimal control for type-1 Diabetes

Mohab M. H. Atanasious
;
Valentina Becchetti;Alessandro Giuseppi
2025

Abstract

This work introduces a safe data-driven control methodology, Data-Enabled Predictive Control (DeePC), for the control of blood glucose in type-1 diabetic patients. DeePC utilizes input-output trajectory data directly without requiring a system model or state estimation like other modelbased algorithms. The control strategy is validated using the Bergman Minimal Model, a well-established framework for glucose-insulin dynamics. Comparative simulations are conducted against Proportional-Integral-Derivative (PID) and Model Predictive Control (MPC) strategies. Results show that DeePC achieves comparable or superior glycemic regulation, particularly under model uncertainty, by maintaining normoglycemia and reducing hypoglycemia risk. The findings demonstrate the robustness and potential of DeePC in biomedical applications where model accuracy is uncertain. Future works would include computational efficiency improvements and handling uncertainties in meal estimation.
2025
2025 11th International Conference on Control, Decision and Information Tech- nologies (CoDIT). IEEE, 2025.
type 1 diabetes, optimal control; safe data-driven contro
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Safe Data-Driven Optimal control for type-1 Diabetes / Atanasious, Mohab M. H.; Becchetti, Valentina; Giuseppi, Alessandro. - (2025). (Intervento presentato al convegno 2025 11th International Conference on Control, Decision and Information Tech- nologies (CoDIT). IEEE, 2025. tenutosi a Spalato).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1753660
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact