Model Predictive Control (MPC) enforces state and input constraints but depends on accurate models, which are often unavailable or too complex in biomedical settings. A neural MPC framework is proposed in which a feed-forward neural network, trained from input–state data, serves as the prediction model. The approach is validated in silico on a tumor–immune system coordinating chemotherapy and immunotherapy under a safety constraint. Neural MPC achieves regulation comparable to model-based MPC and optimal control, while remaining robust to parameter uncertainty, and outperforms a baseline ARX-MPC which converges to a displaced equilibrium with steady-state tracking error.

Neural MPC for Safety-Critical Biological Systems: an Application to Tumor-Immune Cancer Dynamics / Baldisseri, F.; Menegatti, D.; Maiani, A.; Giuseppi, A.; Pietrabissa, A.. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - (2026).

Neural MPC for Safety-Critical Biological Systems: an Application to Tumor-Immune Cancer Dynamics

F. Baldisseri;D. Menegatti;A. Maiani;A. Giuseppi;
2026

Abstract

Model Predictive Control (MPC) enforces state and input constraints but depends on accurate models, which are often unavailable or too complex in biomedical settings. A neural MPC framework is proposed in which a feed-forward neural network, trained from input–state data, serves as the prediction model. The approach is validated in silico on a tumor–immune system coordinating chemotherapy and immunotherapy under a safety constraint. Neural MPC achieves regulation comparable to model-based MPC and optimal control, while remaining robust to parameter uncertainty, and outperforms a baseline ARX-MPC which converges to a displaced equilibrium with steady-state tracking error.
2026
Neural Networks; Model Predictive Control; Biological Systems; Data-driven Control.
01 Pubblicazione su rivista::01a Articolo in rivista
Neural MPC for Safety-Critical Biological Systems: an Application to Tumor-Immune Cancer Dynamics / Baldisseri, F.; Menegatti, D.; Maiani, A.; Giuseppi, A.; Pietrabissa, A.. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - (2026).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1753374
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact