Measurements are central in all quantitative sciences and a fundamental challenge is to make observations without systematic measurement errors. This holds in particular for quantum information processing, where other error sources like noise and decoherence are unavoidable. Consequently, methods for detecting systematic errors have been developed, but the required quantum state properties are yet unexplored. We develop theoretically a direct and efficient method to detect systematic errors in quantum experiments and demonstrate it experimentally using quantum state tomography of photon pairs emitted from a semiconductor quantum dot. Our results show that entanglement as well as quantum states with a high purity can help to identify systematic errors.

Entanglement and purity can help to detect systematic experimental errors / Freund, Julia; Basso Basset, Francesco; Krieger, Tobias M.; Laneve, Alessandro; Beccaceci, Mattia; Rota, Michele B.; Buchinger, Quirin; Covre Da Silva, Saimon F.; Stroj, Sandra; Höfling, Sven; Huber-Loyola, Tobias; Kueng, Richard; Rastelli, Armando; Trotta, Rinaldo; Gühne, Otfried. - (2025).

Entanglement and purity can help to detect systematic experimental errors

Francesco Basso Basset;Alessandro Laneve;Mattia Beccaceci;Michele B. Rota;Sandra Stroj;Rinaldo Trotta;
2025

Abstract

Measurements are central in all quantitative sciences and a fundamental challenge is to make observations without systematic measurement errors. This holds in particular for quantum information processing, where other error sources like noise and decoherence are unavoidable. Consequently, methods for detecting systematic errors have been developed, but the required quantum state properties are yet unexplored. We develop theoretically a direct and efficient method to detect systematic errors in quantum experiments and demonstrate it experimentally using quantum state tomography of photon pairs emitted from a semiconductor quantum dot. Our results show that entanglement as well as quantum states with a high purity can help to identify systematic errors.
2025
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1753308
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact