This paper investigates a broad class of non-Gaussian measures, $ \mu_\Psi$, associated with a family of generalized Wright functions, $_m\Psi_q$. First, we study these measures in Euclidean spaces $\mathbb{R}^d$, then define them in an abstract nuclear triple $\mathcal{N}\subset\mathcal{H}\subset\mathcal{N}'$. We study analyticity, invariance properties, and ergodicity under a particular group of automorphisms. Then we show the existence of an Appell system which allows the extension of the non-Gaussian Hilbert space $L^2(\mu_\Psi)$ to the nuclear triple consisting of test functions' and distributions' spaces, $(\mathcal{N})^{1}\subset L^2(\mu_\Psi)\subset(\mathcal{N})_{\mu_\Psi}^{-1}$. Thanks to this triple, we can study Donsker's delta as a well-defined object in the space of distributions $(\mathcal{N})_{\mu_\Psi}^{-1}$.

Generalized Wright Analysis in Infinite Dimensions / Beghin, Luisa; Cristofaro, Lorenzo; Luis Da Silva, Josè. - In: INTEGRAL EQUATIONS AND OPERATOR THEORY. - ISSN 0378-620X. - 97:(2026), pp. 1-28.

Generalized Wright Analysis in Infinite Dimensions

Luisa Beghin;Lorenzo Cristofaro
;
2026

Abstract

This paper investigates a broad class of non-Gaussian measures, $ \mu_\Psi$, associated with a family of generalized Wright functions, $_m\Psi_q$. First, we study these measures in Euclidean spaces $\mathbb{R}^d$, then define them in an abstract nuclear triple $\mathcal{N}\subset\mathcal{H}\subset\mathcal{N}'$. We study analyticity, invariance properties, and ergodicity under a particular group of automorphisms. Then we show the existence of an Appell system which allows the extension of the non-Gaussian Hilbert space $L^2(\mu_\Psi)$ to the nuclear triple consisting of test functions' and distributions' spaces, $(\mathcal{N})^{1}\subset L^2(\mu_\Psi)\subset(\mathcal{N})_{\mu_\Psi}^{-1}$. Thanks to this triple, we can study Donsker's delta as a well-defined object in the space of distributions $(\mathcal{N})_{\mu_\Psi}^{-1}$.
2026
Non-Gaussian analysis; Appell systems; Integral transforms of distribution; Donsker's delta; generalized Wright functions
01 Pubblicazione su rivista::01a Articolo in rivista
Generalized Wright Analysis in Infinite Dimensions / Beghin, Luisa; Cristofaro, Lorenzo; Luis Da Silva, Josè. - In: INTEGRAL EQUATIONS AND OPERATOR THEORY. - ISSN 0378-620X. - 97:(2026), pp. 1-28.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1752572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact