Summary. This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI’s role in improving surgical planning, resource allocation, and clinical decision-making.

Modello multi-step basato su intelligenza artificiale per il timing chirurgico in oncologia pediatrica / Capuzzi, Silvia; Baldisseri, Federico; Cacchione, Antonella; Carai, Andrea; Fabozzi, Francesco; Pietrabissa, Antonio; Mastronuzzi, Angela; Tozzi, Alberto Eugenio; Ferro, Diana. - In: RECENTI PROGRESSI IN MEDICINA. - ISSN 2038-1840. - 116:10(2025), pp. 593-594. [10.1701/4573.45791]

Modello multi-step basato su intelligenza artificiale per il timing chirurgico in oncologia pediatrica

Capuzzi, Silvia
;
Baldisseri, Federico;Pietrabissa, Antonio;
2025

Abstract

Summary. This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI’s role in improving surgical planning, resource allocation, and clinical decision-making.
2025
Artificial Intelligence; Machine Learning; Real-World Data; Electronic Health Records; Predictive Analytics; Explainable AI; Paediatric Oncology; Surgical Scheduling; Clinical Decision Support
01 Pubblicazione su rivista::01a Articolo in rivista
Modello multi-step basato su intelligenza artificiale per il timing chirurgico in oncologia pediatrica / Capuzzi, Silvia; Baldisseri, Federico; Cacchione, Antonella; Carai, Andrea; Fabozzi, Francesco; Pietrabissa, Antonio; Mastronuzzi, Angela; Tozzi, Alberto Eugenio; Ferro, Diana. - In: RECENTI PROGRESSI IN MEDICINA. - ISSN 2038-1840. - 116:10(2025), pp. 593-594. [10.1701/4573.45791]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1752431
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact