The increasing adoption of Large Language Models (LLMs) has significantly lowered technical barriers across various domains, enabling tasks such as code generation, database querying, and service composition. This work explores the potential of LLMs to facilitate human access to heterogeneous data in Cyber-Physical Systems (CPS). The proposed system interprets natural language queries and, by leveraging in-context learning, dynamically synthesizes data integration pipelines that compose data services, thus enabling access to information from multiple sources. The execution of a pipeline generates a table that fulfills the input query, effectively integrating and structuring the retrieved data. This paper presents the design and implementation of the proposed solution and its evaluation using a real-world case study and the BIRD benchmark dataset. The results demonstrate its effectiveness in improving data retrieval, data service design, and execution in CPS.

Data Service Composition in Cyber-Physical Systems Adopting LLMs / Izzi, Adriano; Mathew, Jerin George; Monti, Flavia; Firmani, Donatella; Leotta, Francesco; Mandreoli, Federica; Mecella, Massimo. - 2025(2025), pp. 625-636. ( 2025 IEEE International Conference on Web Services, ICWS 2025 Helsinki; Finlandia ) [10.1109/icws67624.2025.00085].

Data Service Composition in Cyber-Physical Systems Adopting LLMs

Izzi, Adriano;Mathew, Jerin George;Monti, Flavia
;
Firmani, Donatella;Leotta, Francesco;Mecella, Massimo
2025

Abstract

The increasing adoption of Large Language Models (LLMs) has significantly lowered technical barriers across various domains, enabling tasks such as code generation, database querying, and service composition. This work explores the potential of LLMs to facilitate human access to heterogeneous data in Cyber-Physical Systems (CPS). The proposed system interprets natural language queries and, by leveraging in-context learning, dynamically synthesizes data integration pipelines that compose data services, thus enabling access to information from multiple sources. The execution of a pipeline generates a table that fulfills the input query, effectively integrating and structuring the retrieved data. This paper presents the design and implementation of the proposed solution and its evaluation using a real-world case study and the BIRD benchmark dataset. The results demonstrate its effectiveness in improving data retrieval, data service design, and execution in CPS.
2025
2025 IEEE International Conference on Web Services, ICWS 2025
Cyber-Physical Systems; Data services; Large Language Models; Service composition
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Data Service Composition in Cyber-Physical Systems Adopting LLMs / Izzi, Adriano; Mathew, Jerin George; Monti, Flavia; Firmani, Donatella; Leotta, Francesco; Mandreoli, Federica; Mecella, Massimo. - 2025(2025), pp. 625-636. ( 2025 IEEE International Conference on Web Services, ICWS 2025 Helsinki; Finlandia ) [10.1109/icws67624.2025.00085].
File allegati a questo prodotto
File Dimensione Formato  
Izzi_preprint_Data-Service-Composition_2025.pdf

accesso aperto

Note: DOI: 10.1109/ICWS67624.2025.00085
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 319.01 kB
Formato Adobe PDF
319.01 kB Adobe PDF
Izzi_Data-Service-Composition_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 381.46 kB
Formato Adobe PDF
381.46 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1752342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact