We examine the numerical approximation of time-dependent Hamilton-Jacobi (HJ) equations on networks, providing a convergence error estimate for the semi-Lagrangian scheme introduced in Carlini and Siconolfi (Numerical analysis of time-dependent HJ equations on networks. 2023. 10.48550/arXiv.2310.06092), where convergence was proven without an error estimate.We derive a convergence error estimate of order one-half. This is achieved by showing the equivalence between two definitions of solutions to this problem proposed in Imbert and Monneau (Ann Sci Éc Norm Supér 50(2): 357–448, 2017) and Siconolfi (J Math Pures Appl 163: 702–738, 2022), a result of independent interest, and applying a general convergence result from Carlini et al. (SIAM J Numer Anal 58(6): 3165–3196, 2020).

Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks / Carlini, Elisabetta; Coscetti, Valentina; Pozza, Marco. - In: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. - ISSN 2096-6385. - (2025). [10.1007/s42967-025-00527-w]

Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks

Carlini, Elisabetta
;
Coscetti, Valentina;Pozza, Marco
2025

Abstract

We examine the numerical approximation of time-dependent Hamilton-Jacobi (HJ) equations on networks, providing a convergence error estimate for the semi-Lagrangian scheme introduced in Carlini and Siconolfi (Numerical analysis of time-dependent HJ equations on networks. 2023. 10.48550/arXiv.2310.06092), where convergence was proven without an error estimate.We derive a convergence error estimate of order one-half. This is achieved by showing the equivalence between two definitions of solutions to this problem proposed in Imbert and Monneau (Ann Sci Éc Norm Supér 50(2): 357–448, 2017) and Siconolfi (J Math Pures Appl 163: 702–738, 2022), a result of independent interest, and applying a general convergence result from Carlini et al. (SIAM J Numer Anal 58(6): 3165–3196, 2020).
2025
Error estimate · Hamilton-Jacobi (HJ) equations · Semi-Lagrangian scheme · Embedded networks
01 Pubblicazione su rivista::01a Articolo in rivista
Error Estimate for a Semi-Lagrangian Scheme for Hamilton-Jacobi Equations on Networks / Carlini, Elisabetta; Coscetti, Valentina; Pozza, Marco. - In: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. - ISSN 2096-6385. - (2025). [10.1007/s42967-025-00527-w]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1752313
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact