We provide symmetrization results in the form of mass concentration comparisons for fractional singular parabolic equations in infinite cylinders of the type Omega x(0,T), where Omega subset of R-N (N >= 2) is a bounded, open set with Lipschitz boundary, and T>0. The fundamental ingredients of the proof are an implicit time discretization procedure and a max/min argument, previously applied to nonlocal elliptic problems in the recent paper Brandolini et al. (2023).
Comparison results for the fractional heat equation with a singular lower order term / Brandolini, Barbara; De Bonis, Ida; Ferone, Vincenzo; Volzone, Bruno. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - (2025).
Comparison results for the fractional heat equation with a singular lower order term
Barbara Brandolini;Ida de Bonis;Bruno Volzone
2025
Abstract
We provide symmetrization results in the form of mass concentration comparisons for fractional singular parabolic equations in infinite cylinders of the type Omega x(0,T), where Omega subset of R-N (N >= 2) is a bounded, open set with Lipschitz boundary, and T>0. The fundamental ingredients of the proof are an implicit time discretization procedure and a max/min argument, previously applied to nonlocal elliptic problems in the recent paper Brandolini et al. (2023).| File | Dimensione | Formato | |
|---|---|---|---|
|
Brandolini_Comparison_2025.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
930.39 kB
Formato
Adobe PDF
|
930.39 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


