Actions for improving water quality are critical and include the remediation of polluted groundwater. The effectiveness of the remediation strategy to remove contamination by chlorinated solvents may be increased by combining physicochemical treatments (i.e., adsorption) and biological degradation (i.e., biological reductive dechlorination (BRD)). Recent studies have shown the potentialities of bio-based materials for bioremediation purposes, including polyhydroxybutyrate (PHB), a biodegradable microbial polyester tested as a fermentable source of slow-release electron donors. Further, a low-cost biochar derived from the pyrolysis of pinewood waste (PWB), used as sorbent material, has recently been proposed to accelerate reductive microbial dehalogenation. Here, we propose a coupled adsorption and biodegradation (CAB) process for trichloroethylene (TCE) removal in a mini pilot-scale reactor composed of two reactive zones, the first one filled with PHB and the second one with PWB. This work aimed to evaluate the performance of the CAB process with particular regard to the effectiveness of the PWB in sustaining the biofilm, mostly enriched by Dehalococcoides mccartyi. The main results showed the CAB system treated around 1300 L of contaminated water, removing 102 mg TCE per day. Combining PHB and PWB had a positive effect on the growth of the dechlorinating community with a high abundance of Dhc cells.
A coupled adsorption–biodegradation (CAB) process employing a Polyhydroxybutyrate (PHB)–Biochar mini pilot-scale reactor for Trichloroethylene-contaminated groundwater remediation / Lorini, Laura; Rossi, Marta Maria; Di Franca, Maria Letizia; Villano, Marianna; Matturro, Bruna; Petrangeli Papini, Marco. - In: BIOENGINEERING. - ISSN 2306-5354. - 12:2(2025), pp. 1-14. [10.3390/bioengineering12020148]
A coupled adsorption–biodegradation (CAB) process employing a Polyhydroxybutyrate (PHB)–Biochar mini pilot-scale reactor for Trichloroethylene-contaminated groundwater remediation
Lorini, Laura
Primo
;Rossi, Marta Maria;Villano, Marianna;Matturro, Bruna;Petrangeli Papini, Marco
2025
Abstract
Actions for improving water quality are critical and include the remediation of polluted groundwater. The effectiveness of the remediation strategy to remove contamination by chlorinated solvents may be increased by combining physicochemical treatments (i.e., adsorption) and biological degradation (i.e., biological reductive dechlorination (BRD)). Recent studies have shown the potentialities of bio-based materials for bioremediation purposes, including polyhydroxybutyrate (PHB), a biodegradable microbial polyester tested as a fermentable source of slow-release electron donors. Further, a low-cost biochar derived from the pyrolysis of pinewood waste (PWB), used as sorbent material, has recently been proposed to accelerate reductive microbial dehalogenation. Here, we propose a coupled adsorption and biodegradation (CAB) process for trichloroethylene (TCE) removal in a mini pilot-scale reactor composed of two reactive zones, the first one filled with PHB and the second one with PWB. This work aimed to evaluate the performance of the CAB process with particular regard to the effectiveness of the PWB in sustaining the biofilm, mostly enriched by Dehalococcoides mccartyi. The main results showed the CAB system treated around 1300 L of contaminated water, removing 102 mg TCE per day. Combining PHB and PWB had a positive effect on the growth of the dechlorinating community with a high abundance of Dhc cells.| File | Dimensione | Formato | |
|---|---|---|---|
|
Lorini_A-Coupled_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


