The study of level sets of solutions to partial differential equations, particularly for the semilinear elliptic problem (Formula presented.) on a Riemannian manifold (Formula presented.), has been a fundamental area in mathematical analysis. This type of equation appears in various physical models, including reaction-diffusion processes and phase transition phenomena. In this survey, we provide a historical overview and discussion of the main properties and results related to the level sets of solutions under zero Dirichlet boundary conditions. Additionally, we address the related problem of uniqueness of the critical point of the solution (Formula presented.).

Geometrical Properties of Solutions to −Δg u=f(u) / Grossi, Massimo; Raom, Daniel. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - (2025). [10.1002/mma.11198]

Geometrical Properties of Solutions to −Δg u=f(u)

Grossi, Massimo
;
Raom, Daniel
2025

Abstract

The study of level sets of solutions to partial differential equations, particularly for the semilinear elliptic problem (Formula presented.) on a Riemannian manifold (Formula presented.), has been a fundamental area in mathematical analysis. This type of equation appears in various physical models, including reaction-diffusion processes and phase transition phenomena. In this survey, we provide a historical overview and discussion of the main properties and results related to the level sets of solutions under zero Dirichlet boundary conditions. Additionally, we address the related problem of uniqueness of the critical point of the solution (Formula presented.).
2025
CRITICAL POINTS; ELLIPTIC EQUATIONS; DEGREE THEORY
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
Geometrical Properties of Solutions to −Δg u=f(u) / Grossi, Massimo; Raom, Daniel. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - (2025). [10.1002/mma.11198]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1751419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact